Algebra 2 Honors

WS: Chapter 5, Part II Review

Name_____Block____

All work and answers should be done on separate paper.

When necessary, answers should be given as fractions or radicals in simplest form.

In 1 – 3, write each expression in radical form, and simplify.

1.
$$216^{\frac{2}{3}}$$

2.
$$1000^{-\frac{2}{3}}$$

3.
$$(16x^3)^{\frac{3}{2}}$$

In 4 – 6, write each expression by using rational exponents.

4.
$$\sqrt[5]{(3x)^4}$$

5.
$$(\sqrt[5]{-6})^3$$

6.
$$\sqrt[4]{30x^3}$$

In 7 – 22, simplify each expression. Assume all variables are positive.

7.
$$25^{\frac{1}{4}} \cdot 25^{-\frac{7}{4}}$$

$$8. \left(\frac{x^8}{y^4}\right)^{\frac{3}{4}}$$

9.
$$\left(\frac{x^3}{125}\right)^{\frac{1}{3}}$$

10.
$$\left(-8x^{18}\right)^{\frac{2}{3}} \left(\sqrt[3]{y^6}\right)$$

11.
$$\frac{\sqrt{xy^3z^5}}{\sqrt[4]{x^5y^3z}}$$

12.
$$\left(-27x^6\right)^{\frac{1}{3}}$$

13.
$$(4x)^{-\frac{1}{2}} \cdot (9x)^{\frac{1}{2}}$$

$$14.\left(\sqrt[3]{-8x^9}\right)^2$$

$$15. \left(3x\right)^{\frac{2}{3}} \left(3x\right)^{\frac{7}{3}}$$

16.
$$\left(\frac{m^8}{n^{12}}\right)^{-\frac{1}{4}}$$

17.
$$\sqrt[4]{(2x)^8} \cdot \sqrt[3]{(2x)^6}$$

$$18.\sqrt[3]{\frac{x^7}{27x^3}}$$

$$19.\frac{3}{2\sqrt{x}-1}$$

$$20. \ \frac{5 + \sqrt[4]{2x^2}}{\sqrt[4]{27x}}$$

21.
$$\left(\frac{a^{\frac{2}{3}}b^{-1}}{\frac{1}{ba^{-\frac{1}{5}}}}\right)^{2}$$

22.
$$\frac{m^{\frac{3}{2}}n \cdot 4mn^{-2}}{6mn^{\frac{1}{4}}}$$

In 23 - 25, graph each function and identify its domain and range.

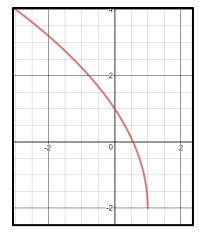
23.
$$f(x) = -\sqrt{x-4}$$

24.
$$f(x) = \sqrt[3]{-x} + 1$$

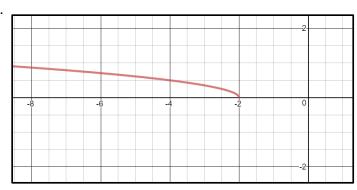
25.
$$g(x) = \frac{1}{2}\sqrt[3]{x} - 3$$

In 26 - 27, using the graph of $f(x) = \sqrt{x}$ as a guide, describe the transformation(s).

26.
$$g(x) = 4\sqrt{x+8}$$


27.
$$g(x) = -\sqrt{3x} + 2$$

In 28 - 30, use the description to write the square root function g.


- 28. The parent function $f(x) = \sqrt{x}$ is reflected across the *y*-axis, vertically stretched by a factor of 7, and translated 3 units down.
- 29. The parent function $f(x) = \sqrt{x}$ is translated 2 units right, compressed horizontally by a factor of $\frac{1}{2}$, and reflected across the *x*-axis.
- 30. The parent function $f(x) = \sqrt{x}$ is compressed vertically by a factor of $\frac{1}{4}$, reflected across the *x*-axis, and translated 6 units up.

In 31 - 32, write an equation for the graph shown. Answers may vary.

31.

32.

In 33 - 42, solve each equation.

33.
$$\sqrt[3]{4x+1}-5=0$$

35.
$$x + 2 = \sqrt{3x + 6}$$

$$37.5(6x+1)^{\frac{1}{4}}=10$$

39.
$$\sqrt{x+2} = 1 + \sqrt{x-3}$$

41.
$$\sqrt{x-3} = \frac{2}{\sqrt{x-3}}$$

34.
$$\sqrt[4]{10x+11}=3$$

$$36. \ \left(10x - 25\right)^{\frac{1}{2}} = x$$

38.
$$4(7x+18)^{\frac{1}{2}}=4x$$

40.
$$\sqrt{\sqrt{x-3}} = \sqrt{x-15}$$

42.
$$\sqrt[3]{x+2} = \sqrt[3]{\frac{x}{2}+5}$$

In 43 – 48, solve each inequality. Answers should be given using interval notation.

43.
$$\sqrt{x+5} < 4$$

45.
$$\sqrt{10x} \le 3\sqrt{x+1}$$

47.
$$2\sqrt[3]{3x-1}-4\geq 0$$

44.
$$\sqrt{2x+7}-6 > -1$$

46.
$$6 - \sqrt{x-4} \ge -2$$

48.
$$\sqrt{2} - \sqrt{x+6} \le -\sqrt{x}$$