Block_____

Graph each function. State the domain, range and asymptote.
Note: Your graph should include at least three clearly labeled points and the asymptote.

1. $g(x)=5\left(2^{-x}\right)$

2. $g(x)=\log (x+5)$

3. $g(x)=5^{\frac{x}{4}}$

4. $g(x)=3-\ln x$

5. Given the set of transformations on $f, f(x)=\log _{4} x$, write the equation that yields $g$.
a. 3 units left, 2 units up
b. 4 units right, reflection in the $x$-axis
c. reflection in the $y$-axis, down 3

$$
g(x)=
$$

$\qquad$
6. Write the transformed function.

The function $f(x)=8 \cdot 7^{2 x}-5$ is horizontally stretched by a factor of 2 , vertically compressed by a factor of 0.5 , translated 1 unit right, and reflected across the $x$-axis.
7. $\log _{3} 81^{5}$
8. $\log _{\frac{1}{4}} 8$
9. $\left(\log 10^{8 x}\right)\left(\ln e^{7}\right)$
10. $5^{\log _{5} 30-\log _{5} 2}$
11. $\ln e$
12. $2 \log 5+\log 4$
13. $e^{\ln 3 x y^{2}}$
14. $\log _{6} \frac{1}{216}$
15. Rewrite $\log _{16} \frac{1}{4}=-\frac{1}{2}$ in exponential form.
16. Rewrite $3^{-4}=\frac{1}{81}$ in logarithmic form.
17. Colleen's station wagon is depreciating at a rate of $9 \%$ per year. She paid $\$ 24,500$ for it in 2002 . What will the car be worth in 2008 to the nearest hundred dollars?
18. A parcel of land Jason bought in 2000 for $\$ 100,000$ is appreciating in value at a rate of about $4 \%$ each year. Write a function to model the appreciation of the value of the land, and determine (algebraically) in what year will the land double its value?
19. A deposit of $\$ 10,000$ is made in a savings account for which the interest is compounded continuously. The balance will double in 5 years.
a. What is the annual interest rate for this account?
b. Find the balance after 3 years.
20. Ariana has a choice of two investments. She can invest $\$ 12,000$ at $5 \%$ for 8 years, or she can invest $\$ 9000$ at $6.5 \%$ for 7 years. Both accounts are compounded continuously. Which investment will result in the greater amount of interest earned?
21. Use the natural decay function, $N(t)=N_{0} e^{-k t}$, to find the decay constant for a substance that has a half-life of 1000 years.
22. Use the natural decay function, $N(t)=N_{0} e^{-k t}$, to find the age of a fossil containing $35 \%$ of the original amount of a particular substance. This substance has a half-life of 2450 years.
23. Newton's Law of Cooling: $T=T_{S}+\left(T_{0}-T_{S}\right) e^{-k t}$, where $T_{0}$ is the initial temperature and $T_{S}$ is the surrounding temperature.

Your car just overheated on the drive home from work and is stuck on the side of the road. It overheated at $300^{\circ} \mathrm{F}$ and can be driven again at $230^{\circ} \mathrm{F}$. If $k=0.0048$ and it is $65^{\circ} \mathrm{F}$ outside, how long (in minutes) do you have to wait until you can continue driving?

## Use the change of base formula to evaluate:

24. $\log _{5} 7$
25. $\log _{\frac{1}{3}} \frac{1}{5}$

Use $\log _{a} 2 \approx 0.3562$ and $\log _{a} 3 \approx 0.5646$ to rewrite and evaluate the following expressions.
26. $\log _{a}\left(\frac{2}{3}\right)$
27. $\log _{a} 6$
28. $\log _{a} \frac{9}{4}$

## Expand each expression.

29. $\log _{5} 7 x^{3} y$
30. $\ln \left(\frac{x^{2} y^{3}}{x-y}\right)$
31. $\ln \sqrt{x^{3} y^{2}}$

## Condense each expression.

32. $\frac{1}{3} \log _{4}(x+y)$
33. $3 \ln (x-2)-2 \ln (x+2)$
34. $\log 8+3 \log x-\log 7$

Solve each equation algebraically. Work MUST be shown.
35. $16^{3 x}=8^{x+6}$
36. $-4 \log _{6}(9 x)-7=-23$
37. $12^{x-1}=20^{2}$
38. $\left(\frac{1}{16}\right)^{x+5}=8^{2}$
39. $216^{\frac{x}{3}}=36^{2 x+3}$
40. $7 \cdot 9^{2 x-4}+3=45$
41. $e^{4 x}-7=10$
42. $3+e^{-2 x}=11$
43. $\log _{5}(4 x-5)^{2}=6$
44. $\log x-\log 8=3$
45. $\ln \left(x^{2}-9\right)=\ln (5 x+5)$
46. $\log x^{3}+\log 8=3$
47. $\log \left(x^{2}-1\right)-\log 12=1$
48. $\ln 5 x-9=11$

