\qquad Date \qquad Class \qquad

LESSON Practice B

6-4
 Transforming Functions

Given $f(x)=\left\{\begin{array}{ll}x^{2}-9 x-1 & \text { if } x<0 \\ 10-x & \text { if } x \geq 0\end{array}\right.$, write the rule for each function.

1. $h(x)$, a reflection of $f(x)$ across the y-axis \qquad
2. $k(x)$, a vertical stretch of $f(x)$ by a factor of 2 \qquad
3. $g(x)$, a horizontal translation 2 units right \qquad

Identify the x - and y-intercepts of $f(x)$. Then identify the x - and y-intercepts of $g(x)$.
4. $f(x)=x^{2}-36$ \qquad
5. $f(x)=-3 x+12$ \qquad

Given $f(x)$, graph $g(x)$.

6. $f(x)=x^{2}+2 x+1$ and $g(x)=-f\left(\frac{x}{2}\right)$

$$
g(x)=f(2 x)
$$

\qquad

$$
g(x)=-2 f(x) .
$$

\qquad
7. $f(x)=3 x-6$ and $g(x)=f(-x)$

Solve.

8. Ron walks from his house to the parking garage at a rate of 8 feet per second.

The parking garage is 3960 feet from the house. The distance can be represented by the function $D(x)=8 x$, where x is the time, in seconds. Walking back to his house, Ron increases his speed by 25%.
a. Write a function to show the distance Ron is from the house as he walks back from the parking garage. \qquad
b. How far is Ron from his house 2 minutes after leaving the parking garage?

