Algebra 2 Honors	Name	
WS: 4.1, 4.3, 4.4 Review	Date	Block

In 1 - 2, tell whether the function represents exponential growth or decay. Graph the function and state its domain and range. Include a table showing the points used to make your graph.

- 3. Since January 1980, the population of the city of Brownville has grown according to the mathematical model $f(x) = 720,500(1.022)^x$, where x is the number of years since January 1980.
 - a. Explain what the numbers 720,500 and 1.022 represent in this model.
 - b. What would the population be in 2000 if the growth continues at the same rate?
 - c. Use your graphing calculator to predict when the population of Brownville will first reach 1,000,000.
- 4. Your new computer cost \$1500 but it depreciates in value by about 18% each year.
 - a. Write an equation that would indicate the value of the computer after x years.
 - b. How much will your computer be worth in 6 years?
 - c. About how long will it take before your computer is worth close to zero dollars, according to your equation?

In 5 – 8, rewrite each equation in exponential form.

5.
$$\log_6 36 = 2$$

7. $\log_u \frac{15}{16} = v$

6.
$$\log_{14} \frac{1}{196} = -2$$

8. $\log_u v = -16$

In 9 - 12, rewrite each equation in logarithmic form.

9.
$$64^{1/2} = 8$$
 11. $u^{-14} = v$

$$10. \ 9^{-2} = \frac{1}{81}$$
 12. $9^y = x$

In 13 – 26, evaluate. NO CALCULATORS!

13. log ₄ 64	18. log ₂ 4	23. $12^{\log_{12} 144}$
14. log ₆ 216	19. log ₃₄₃ 7	24. $5^{\log_5 17}$
15. log ₄ 16	20. log ₈ 4	25. $x^{\log_x 72}$
16. $\log_3 \frac{1}{243}$	21. log ₆₄ 4	26. $9^{\log_3 20}$
17. log ₅ 125	22. $\log_6 \frac{1}{216}$	

In 27 – 32, expand each logarithm.

27. $\log(6 \cdot 11)$	$30. \log \frac{x}{y^6}$
28. $\log\left(\frac{6}{11}\right)^5$	31. $\log \sqrt[3]{xyz}$

29.
$$\log \frac{2^4}{5}$$
 32. $\log \frac{u^4}{v}$

In 33 – 40, condense each expression to a single logarithm.

33.
$$\log 3 - \log 8$$
 35. $\log \frac{7}{12^2}$

34. $4\log 3 - 4\log 8$

36. $6\log_3 u + 6\log_3 v$

37. $\log_4 u - 6\log_4 v$

39. $\log x - 4 \log y$

38. $20\log_6 u + 5\log_6 v$

40. $2(\log 2x - \log y) - (\log 3 + 2\log 5)$

In 41 – 44, use the change of base formula to evaluate. Work must be shown!

41. $\log_2 8.7$ 43. $\log_{12} 3$

42. log₁₃194

44. log₃ 62