\qquad

In $1 \mathbf{- 2}$, tell whether the function represents exponential growth or decay. Graph the function and state its domain and range. Include a table showing the points used to make your graph.

1. $f(x)=4 \cdot 2^{x}$

2. $f(x)=2\left(\frac{1}{2}\right)^{x}$

3. Since January 1980, the population of the city of Brownville has grown according to the mathematical model $f(x)=720,500(1.022)^{x}$, where x is the number of years since January 1980.
a. Explain what the numbers 720,500 and 1.022 represent in this model.
b. What would the population be in 2000 if the growth continues at the same rate?
c. Use your graphing calculator to predict when the population of Brownville will first reach 1,000,000.
4. Your new computer cost $\$ 1500$ but it depreciates in value by about 18% each year.
a. Write an equation that would indicate the value of the computer after x years.
b. How much will your computer be worth in 6 years?
c. About how long will it take before your computer is worth close to zero dollars, according to your equation?

In 5-8, rewrite each equation in exponential form.
5. $\log _{6} 36=2$
7. $\log _{u} \frac{15}{16}=v$
6. $\log _{14} \frac{1}{196}=-2$
8. $\log _{u} v=-16$

In 9-12, rewrite each equation in logarithmic form.
9. $64^{1 / 2}=8$
10. $9^{-2}=\frac{1}{81}$
11. $u^{-14}=v$
12. $9^{y}=x$

In 13 - 26, evaluate. NO CALCULATORS!
13. $\log _{4} 64$
14. $\log _{6} 216$
15. $\log _{4} 16$
16. $\log _{3} \frac{1}{243}$
17. $\log _{5} 125$
18. $\log _{2} 4$
19. $\log _{343} 7$
20. $\log _{8} 4$
21. $\log _{64} 4$
22. $\log _{6} \frac{1}{216}$
23. $12^{\log _{12} 144}$
24. $5^{\log _{5} 17}$
25. $x^{\log _{x} 72}$

In 27 - 32, expand each logarithm.
27. $\log (6 \cdot 11)$
30. $\log \frac{x}{y^{6}}$
28. $\log \left(\frac{6}{11}\right)^{5}$
31. $\log \sqrt[3]{x y z}$
29. $\log \frac{2^{4}}{5}$
32. $\log \frac{u^{4}}{v}$

In 33-40, condense each expression to a single logarithm.
33. $\log 3-\log 8$
35. $\log \frac{7}{12^{2}}$
34. $4 \log 3-4 \log 8$
36. $6 \log _{3} u+6 \log _{3} v$
37. $\log _{4} u-6 \log _{4} v$
39. $\log x-4 \log y$
38. $20 \log _{6} u+5 \log _{6} v$
40. $2(\log 2 x-\log y)-(\log 3+2 \log 5)$

In 41 - 44, use the change of base formula to evaluate. Work must be shown!
41. $\log _{2} 8.7$
43. $\log _{12} 3$
42. $\log _{13} 194$
44. $\log _{3} 62$

