Finding Real Roots of Polynomial Equations

Solve each polynomial equation by factoring.

$$2. 8x^7 - 56x^6 + 96x^5 = 0$$

Identify the roots of each equation. State the multiplicity of each root.

3.
$$x^3 + 6x^2 + 12x - 8 = 0$$

4.
$$x^3 + 10x^2 + 32x + 32 = 0$$

Identify all the real roots of each equation.

$$5. x^3 + 2x^2 - 48x = 0$$

6.
$$x^4 - 13x^3 + 55x^2 - 81x + 18 = 0$$

7.
$$6x^3 + 12x^2 - 18x = 0$$

8.
$$x^4 + 8x^3 + 7x^2 - 22x + 6 = 0$$

Solve.

- 9. A jewelry box is designed such that its length is twice its width and its depth is 2 inches less than its width. The volume of the box is 64 cubic inches.
 - a. Write an equation to model the volume of the box.
 - b. List all possible rational roots.
 - c. Use synthetic division to find the roots of the polynomial equation. Are the roots all rational numbers?
 - d. What are the dimensions of the box?

Practice C

1. -5, 0, 7

- 2. 0, 3, 4
- 3. x = 2 with multiplicity 3
- 4. x = -4 with multiplicity 2; x = -2 with multiplicity 1
- 5. -8, 0, 6

6. 3, 6, $2 \pm \sqrt{3}$

7. -3, 0, 1

- 8. -3, 1, $-3 \pm \sqrt{11}$
- 9. a. $2x^3 4x^2 64 = 0$
 - b. ±1, ±2, ±4, ±8, ±16, ±32, ±64
 - c. 4, $-1 \pm i\sqrt{7}$; no, 2 of the roots are irrational numbers.
 - d. 4 in. wide, 8 in. long, and 2 in. deep