\qquad

3.3 Practice A

In Exercises 1-4, solve the equation using square roots. Check your solution(s).

1. $x^{2}-4 x+4=9$
2. $y^{2}-12 y+36=49$
3. $n^{2}-20 n+100=40$
4. $p^{2}+14 p+49=2$

In Exercises 5-8, find the value of c that makes the expression a perfect square trinomial. Then write the expression as the square of a binomial.
5. $x^{2}+8 x+c$
6. $x^{2}+14 x+c$
7. $y^{2}-18 y+c$
8. $y^{2}+26 y+c$

In Exercises 9-14, solve the equation by completing the square.
9. $x^{2}+8 x+5=0$
10. $h^{2}-10 h-4=0$
11. $t^{2}-12 t+10=0$
12. $s^{2}+14 s-9=0$
13. $y(y+6)=2$
14. $g(g+10)=-6$

In Exercises 15-18, determine whether you would use factoring, square roots, or completing the square to solve the equation. Explain your reasoning. Then solve the equation.
15. $(x-3)^{2}=25$
16. $x^{2}+5 x+4=0$
17. $x^{2}-6 x+9=0$
18. $x^{2}-10 x-8=0$

In Exercises 19 and 20, find the value of \boldsymbol{x}.
19. Area of rectangle $=64$

20. Area of parallelogram $=20$

In Exercises 21 and 22, write the quadratic function in vertex form. Then identify the vertex.
21. $f(x)=x^{2}+10 x+32$
22. $g(x)=x^{2}-6 x-2$

