\qquad

2.2 Practice A

In Exercises 1-12, graph the function. Label the vertex and axis of symmetry.

1. $f(x)=(x-2)^{2}$
2. $f(x)=(x+1)^{2}$
3. $g(x)=(x+2)^{2}+4$
4. $h(x)=(x-3)^{2}-2$
5. $y=-3(x-1)^{2}+3$
6. $f(x)=4(x+2)^{2}-1$
7. $y=x^{2}-2 x+1$
8. $y=3 x^{2}+6 x+1$
9. $y=-3 x^{2}+6 x+4$
10. $f(x)=-x^{2}+6 x-3$
11. $g(x)=-x^{2}+2$
12. $f(x)=5 x^{2}-4$
13. Explain why you cannot use the axes of symmetry to distinguish between the quadratic functions $y=3 x^{2}+12 x+1$ and $y=x^{2}+4 x+5$.
14. Which function represents the parabola with the narrowest graph? Explain your reasoning.
A. $y=x^{2}+3$
B. $y=0.5 x^{2}-2$
C. $y=3(x+2)^{2}$
D. $y=-2 x^{2}+1$

In Exercises 15-18, find the minimum or maximum value of the function. Describe the domain and range of the function, and where the function is increasing and decreasing.
15. $y=5 x^{2}+2$
16. $y=4 x^{2}-3$
17. $y=-x^{2}+4 x-1$
18. $f(x)=-2 x^{2}+4 x+9$
19. The number of customers in a grocery store is modeled by the function $y=-x^{2}+10 x+50$, where y is the number of customers in the store and x is the number of hours after 7:00 A.M.
a. At what time is the maximum number of customers in the store?
b. How many customers are in the store at the time in part (a)?

