2.2 Practice A

In Exercises 1–12, graph the function. Label the vertex and axis of symmetry.

- 1. $f(x) = (x 2)^2$ 2. $f(x) = (x + 1)^2$ 3. $g(x) = (x + 2)^2 + 4$ 4. $h(x) = (x 3)^2 2$ 5. $y = -3(x 1)^2 + 3$ 6. $f(x) = 4(x + 2)^2 1$ 7. $y = x^2 2x + 1$ 8. $y = 3x^2 + 6x + 1$ 9. $y = -3x^2 + 6x + 4$ 10. $f(x) = -x^2 + 6x 3$ 11. $g(x) = -x^2 + 2$ 12. $f(x) = 5x^2 4$
- **13.** Explain why you cannot use the axes of symmetry to distinguish between the quadratic functions $y = 3x^2 + 12x + 1$ and $y = x^2 + 4x + 5$.
- **14.** Which function represents the parabola with the narrowest graph? Explain your reasoning.
 - **A.** $y = x^2 + 3$ **B.** $y = 0.5x^2 - 2$ **C.** $y = 3(x + 2)^2$ **D.** $y = -2x^2 + 1$

In Exercises 15–18, find the minimum or maximum value of the function. Describe the domain and range of the function, and where the function is increasing and decreasing.

- **15.** $y = 5x^2 + 2$ **16.** $y = 4x^2 3$
 17. $y = -x^2 + 4x 1$ **18.** $f(x) = -2x^2 + 4x + 9$
- **19.** The number of customers in a grocery store is modeled by the function $y = -x^2 + 10x + 50$, where y is the number of customers in the store and x is the number of hours after 7:00 A.M.
 - a. At what time is the maximum number of customers in the store?
 - **b.** How many customers are in the store at the time in part (a)?