2.1 Practice A

1. The graph of *g* is a translation 2 units down of the graph of *f*.

The graph of g is a translation 1 unit up of the graph of f.

3. The graph of g is a translation 1 unit left of the graph of f.

4. The graph of *g* is a translation 2 units right of the graph of *f*.

5. The graph of g is a translation 5 units right of the graph of f.

6. The graph of g is a translation 2 units left and 1 unit down of the graph of f.

7. The graph of g is a reflection in the x-axis followed by a vertical stretch by a factor of 2 of the graph of f.

 The graph of g is a reflection in the y-axis followed by a horizontal shrink of the graph of f by a factor of ½.

The graph of g is a vertical shrink by a factor of ¹/₄ of the graph of f.

- **10.** When 0 < a < 1 in the function $g(x) = a \cdot f(x)$, the transformation is a vertical shrink, not stretch; The graph of g is a reflection in the x-axis followed by a vertical shrink by a factor of $\frac{1}{3}$ of the graph of the parent quadratic function.
- The graph is a vertical stretch by a factor of 2, followed by a translation 3 units left and 2 units up of the parent quadratic function; (-3, 2)
- 12. The graph is a reflection in the x-axis, followed by a vertical stretch by a factor of 5 and a translation 1 unit down of the parent quadratic function; (0, -1)

13.
$$g(x) = -3x^2 - 3$$
; $(0, -3)$

14.
$$g(x) = -x^2 - 7$$
; $(0, -7)$

15. a.
$$a = 2$$
, $h = 3$, $k = -4$; $g(x) = (2x - 3)^2 - 4$

b.
$$a = 4$$
, $h = 3$, $k = -4$; $g(x) = 4(x - 3)^2 - 4$

2.1 Puzzle Time

EL SALVADOR