

7. Given $\sin \theta = \frac{4}{5}$ and $\tan \theta < 0$, find $\cos \theta$ and $\tan \theta$.

$$\frac{\cos 0 = -\frac{3}{5}}{\tan 0 = -\frac{4}{3}}$$

$$tan 0 = -\frac{4}{3}$$

Reference Angles

Let θ be an angle in standard position. Its reference angle is the acute angle θ' formed by the terminal side of θ and the horizontal axis.

In 8-13, find the reference angle for each angle.

8. 300°

0'=60

0-23

10. -135°

11. $\frac{7\pi}{4}$

330

12. 213°

13. 1.7

43-44 Applications

- 1. Devan stands 926 meters from a point directly below the peak of a mountain. The angle of elevation between Devan and the top of the mountain is 42°.
 - a. What is the height of the mountain?

$$\tan 42^{\circ} = \frac{h}{926}$$

 $h = 926 (\tan 42^{\circ})$

b. A tower 50 m high is built on top of the mountain. What is the angle of elevation from Devan's position to the top of the tower?

$$\tan 0 = \frac{883.77}{926}$$

$$\tan^{-1}\left(\frac{883.77}{926}\right) = 43.66$$

c. If a bird flew from Devan's position to the top of the mountain, how many meters would it travel?

2. An engineer builds a 75 foot-cellular telephone tower. Find the angle of elevation to the top of the tower at a point on level ground 50 feet from its base.

- 3. From a point 80 meters from the base of a building to the top of the building the angle of elevation is 51°. From the same point to the top of a flag staff on the building the angle of elevation is 54°.

b. Find the combined height of the building and flagpole.

$$\frac{1}{2} \left(\frac{54}{54} \right)^{6} = \frac{x}{80}$$

$$x = 80 \left(\frac{1}{2} \right)^{6} = \frac{x}{80}$$
What is bright of the flagged along?

c. What is height of the flagpole alone?

d. How long must a cable be in order to stretch from the observation point to the top of the building?

4. The angle of depression of a buoy from the top of the Barnegat Bay lighthouse 130 feet above the surface of the water is 6° . Find the distance from the base of the lighthouse to the buoy.

5. From the top of a 100-ft building a man observes a car moving toward him. If the angle of depression of the car changes from 15° to 33° during the period of observation, how far does the car travel?

Solving Right Triangles

Solve the right triangle. In other words, find the measure of all sides and all angles.

