Solving Three Variable Systems

- Solutions will be ordered triples (x, y, z).
- Possible solutions are: an ordered triple, infinitely many solutions or no solutions.
- Can use substitution or elimination to solve three variable systems.

Let's try one together.

(1) Solve:
$$x-4y+3z=-27$$
 $2x+2y-3z=22$
 $4z=-16$
 $2=-4$
 $2=-4$
 $2=-4$
 $2=-4$
 $2=-4$
 $2=-4$
 $2=-4$
 $2=-4$
 $2=-4$
 $2=-4$
 $2=-4$
 $2=-4$
 $2=-4$
 $2=-4$
 $2=-4$
 $2=-4$
 $2=-4$
 $2=-4$
 $2=-4$
 $2=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-4$
 $3=-$

(2)
$$2x - y + 2z = 15$$

 $+x + y + z = 3$
 $3x - y + 2z = 18$
 $3x - y + 2z = 18$
 $3z = 15$
 $3z = 15$

(3)
$$2x - 5y + z = 5$$

 $2(3x + 2y - z = 17)$
 $4x - 3y + 2z = 17$
 $6x + 4y - 2z = 34$
 $-2(5x - 3y = 22)$
 $10x + y = 51$
 $10x + y = 51$

(4)
$$3x - 2y + 4z = 15$$

 $x - y + z = 3$
 $x + 4y - 5z = 0$

(5)
$$2x + 3y + 4z = 2$$

 $5x - 2y + 3z = 0$
 $x - 5y - 2z = -4$

(5)
$$a+b=3$$
 $C-b=3$
 $a+2c=10$
 $-1(2+c=6) \rightarrow -2-c=-6$
 $b=1$ $(2,1,4)$