Warm Up

In 1 - 3, solve each equation.

1.
$$4x - 7 = 2x + 3(5x - 1) - 9$$
 $\chi = \frac{5}{13}$

2.
$$7x^2 + 34x = 5$$
 $x = \frac{1}{7}$ $x = -5$
3. $\frac{8}{x+1} = 4$ $x = 1$

3.
$$\frac{8}{x+1} = 4$$
 $\chi = 0$

In 4 - 5, solve each inequality. Your solution should be given two ways: using interval notation and shown on a number line. $(-\infty, \frac{5}{13})$ 4. 4x - 7 > 2x + 3(5x - 1) - 9 -7 - 7 - 125. $7x^2 + 34x \le 5$ $-5 \cdot 11$

4.
$$4x - 7 > 2x + 3(5x - 1) - 9$$

5.
$$7x^2 + 34x \le 5$$

Recall: The domain of linear and quadratic functions is all real numbers. So, what happens when you solve an inequality that is based on a function for which the domain is NOT all real numbers? So far in this course. we have studied two functions that fit this description. The domain of a rational function has at least one value excluded from its domain, and the domain of a square root function has a restriction. So, when solving a rational or a square root inequality, you must account for the fact that the function's domain is NOT all real numbers.

Notes: Solving Rational Inequalities

Solve each inequality. Answers should be given using interval notation. Use a number line to assist you.

1.
$$\frac{8}{x+1} > 4$$
 Solution

$$\frac{1}{2}$$

you.
1.
$$\frac{8}{x+1} > 4$$
 Solution from domain $x \neq -1$

ATEST a point in each interval to determine solution.

6.
$$\frac{3x}{x+2} - \frac{2}{x+4} \ge 7$$

$$\begin{bmatrix} -5 & -4 & -3 & -2 \\ -5 & -4 &) \\ 0 & \begin{bmatrix} -3 & -2 \\ -3 & -2 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} x+2 & x+1 \\ 2x-2x-2x-4 & -4 \\ x=-3 & -6 \end{bmatrix}$$