9.4 Classifying Conics

Classifying a Conic from Its General Equation

$$Ax^2 + Cy^2 + Dx + Ey + F = 0$$

Circle: A = CParabola: AC = 0For equation 2

NO BOTH

Ellipse: AC > 0Coefficients of χ^2 have the same sign

Hyperbola: AC < 0 (ve ffix ients of x2) y2 have different signs

NDARD FORM OF EQUATIONS OF TRANSLATED CONICS

following equations the point (h, k) is the vertex of the parabola and enter of the other conics.

LE
$$(x-h)^2 + (y-k)^2 = r^2$$

Horizontal axis

BOLA
$$(y - k)^2 = 4p(x - h)$$
 $(x - h)^2 = 4p(y - k)$

SE

 $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1 \qquad \frac{(x-h)^2}{b^2} + \frac{(y-k)^2}{a^2} = 1$

RBOLA
$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1 \qquad \frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$$

Vertical axis

$$(x-h)^2 = 4p(y-k)$$

$$\frac{(x-h)^2}{b^2} + \frac{(y-k)^2}{a^2} = 1$$

$$\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$$

Classify the Conic: Write the equation in standard form

1.)
$$4x^2 - 9y^2 + 32x - 144y - 548 = 0$$

1.)
$$\underline{4x^2} - \underline{9y^2} + 32x - 144y - 548 = 0$$
 2.) $\underline{2x^2} + \underline{y^2} - 4x - 4 = 0$

3.)
$$4x^2 - 9x + y - 5 = 0$$

 $(x-h)^2 = 4p(y-k)$

4.)
$$2x^2 + 2y^2 - 8x + 12y + 2 = 0$$

$$4x^{2}-9x = -y+5$$

$$4(x^{2}-\frac{9}{4}x+\frac{81}{64})=-y+5+\frac{81}{16}$$

$$4(x-\frac{9}{8})^{2}=-y+\frac{161}{16}$$

$$4(x-\frac{9}{8})^{2}=-1(y-\frac{161}{16})$$

$$\left(\chi - \frac{9}{8}\right)^2 = -\frac{1}{4}\left(\gamma - \frac{161}{16}\right)$$

- (2) Each cable of the Golden Gate Bridge is suspended (in the shape of a parabola) between two towers that are 1280 meters apart. The top of each tower is 152 meters above the roadway. The cables touch the roadway midway between the towers.
- (a) Draw a sketch of the bridge. Locate the origin of a rectangular coordinate system at the center of the roadway. Label the coordinates
- (b) Write an equation that models the cables. $\chi^2 = 2694.74~\text{y}$
- (c) Complete the table by finding the height y of the suspension cables over the roadway at a distance of x meters from the center of the bridge.

_		
1	Distance, x	Height, y
1	0	0
	100	
	250	
	400	
	500	

