6.6 Functions and Their Inverses

*Functions f and g are inverses of each other if f(g(x)) = g(f(x)) = x.

*Notation: The inverse of f(x) is written $f^{-1}(x)$. This is read as "f inverse of x."

Examples

(1) Verify that
$$f(x) = 3x + 6$$
 and $f^{-1}(x) = \frac{1}{3}x - 2$ are inverses.

$$f(f^{-1}(x)) = 3(\frac{1}{3}x - 2) + 6 = x - 6 + 6 = x$$

$$f^{-1}(f(x)) = \frac{1}{3}(3x + 6) - 2 = x + 2 - 2 = x$$

$$f(f^{-1}(x)) = f^{-1}(f(x)) = x + 2 + 2 + 2 = x$$

(2) Verify that $f(x) = \sqrt{5x-2}$ and $f^{-1}(x) = \frac{x^2+2}{5}$, $x \ge 0$ are inverses.

$$f(f^{-1}(x)) = \sqrt{5(x^{2}+2)} - 2 = \sqrt{x^{2}+2} - 2 = \sqrt{x^{2}} = x$$

$$f^{-1}(f(x)) = \frac{(\sqrt{5x-2})^{2} + 2}{5} = \frac{5x-2+2}{5} = \frac{5x}{5} = x$$

To find the inverse of a relation or function, interchange x and y. Then solve for y. Remember - think about what "inverse" means!

Examples. Find the inverse of each function.

(3)
$$f(x) = 3x - 4$$

$$\gamma = 3x - 4$$
 $x + 4 = 3\gamma$

(4)
$$f(x) = \frac{3x-2}{5}$$

$$x = \frac{3y-2}{5}$$

$$5x = 3y - 2$$

$$5x + 2 = 3y$$
 $5x + 2 = 1$

(5) Graph $f(x) = -\frac{1}{2}x - 5$. Then write the inverse and graph.

$$X = -\frac{1}{2}y - 5$$

$$X + 5 = -\frac{1}{2}y$$

$$(y - -2x - 10) \leftarrow f^{-1}(x) = -2x - 10$$

*Note: The graph of $f^{-1}(x)$ is a reflection of the graph of f(x) over the line y = x.

Recall that the vertical-line test can help you determine whether a relation is a function. Similarly, the *horizontal line* test can help you determine whether the inverse of a function is a function.

Recall that to write the rule for the inverse of a function, you can exchange x and y and solve the equation for y. Because the values of x and y are switched, the domain of the function will be the range of its inverse and vice versa.

Examples. Find the inverse of each function. Determine whether the inverse is a function. State its domain and range.

(6)
$$f(x)$$
 Trver(e
 $D: (-\infty, \infty)$ $D: [-2, \infty)$
 $R: [-2, \infty)$ $R: (-\infty, \infty)$
(7) $D: [-3, \infty)$ $P: [0, \infty)$
 $P: [0, \infty)$ $P: [-3, \infty)$

You have seen that the inverses of functions are not necessarily functions. When both a relation and its inverse are functions, the relation is called a *one-to-one function*. In a <u>one-to-one function</u>, each y-value is paired with exactly one x-value.

Application

p. 454 #22

The number of times that a cricket chirps per minute can be found by using the function N(F) = 4F - 160, where F is the temperature in degrees Fahrenheit.

- (a) Find and interpret the inverse of N(F).
- (b) What is the temperature when the cricket is chirping 60 times a minute?
- (c) How many times will the cricket chirp in 1 minute at a temperature of 80 ?