\qquad
\qquad
*Functions f and g are inverses of each other if \qquad .
*Notation: The inverse of $f(x)$ is written \qquad . This is read as \qquad .

Examples

(1) Verify that $f(x)=3 x+6$ and $f^{-1}(x)=\frac{1}{3} x-2$ are inverses.
(2) Verify that $f(x)=\sqrt{5 x-2}$ and $f^{-1}(x)=\frac{x^{2}+2}{5}, x \geq 0$ are inverses.

To find the inverse of a relation or function, \qquad . Then solve for y.

Examples. Find the inverse of each function.
(3) $f(x)=3 x-4$
(4) $f(x)=\frac{3 x-2}{5}$
(5) Use a graphing calculator to graph $f(x)=-\frac{1}{2} x-5$. Then write the inverse and graph the inverse on the same coordinate plane.
*Note: The graph of $f^{-1}(x)$ is \qquad

Horizontal-Iine Test

WORDS	EXAMPLES	
If any horizontal line passes through more than one point on the graph of a relation, the inverse relation is not a function.	Inverse is a function.	Inverse is not a function.

Examples. Find the inverse of each function. Determine whether the inverse is a function. State its domain and range.

(6) $f(x)=x^{2}-2$
(7) $f(x)=(x+3)^{2}, x \geq-3$

Application

p. 454 \# 22

The number of times that a cricket chirps per minute can be found by using the function $N(F)=4 F-160$, where F is the temperature in degrees Fahrenheit.
(a) Find and interpret the inverse of $N(F)$.
(b) What is the temperature when the cricket is chirping 60 times a minute?
(c) How many times will the cricket chirp in 1 minute at a temperature of $80^{\circ} \mathrm{F}$?

