## 6-5 Operations with Functions

You can perform operations on functions in much the same way that you perform operations on numbers or expressions. You can add, subtract, multiply, or divide functions by operating on their rules.

## 6-5 Operations with Functions

## Notation for Function Operations

| Operation | Notation |
| :---: | :---: |
| Addition | $(f+g)(x)=f(x)+g(x)$ |
| Subtraction | $(f-g)(x)=f(x)-g(x)$ |
| Multiplication | $(f g)(x)=f(x) \cdot g(x)$ |
| Division | $\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}$, where $g(x) \neq 0$ |

## 6-5 Operations with Functions

Example 1A: Adding and Subtracting Functions

Given $f(x)=4 x^{2}+3 x-1$ and $g(x)=6 x+2$, find each function.

$$
\begin{aligned}
(\mathbf{f + g})(\mathbf{x}) & =4 x^{2}+9 x+1 \\
& =\left(4 x^{2}+3 x-1\right)+(6 x+2) \\
(\mathbf{f - g})(\mathbf{x}) & =4 x^{2}-3 x-3 \\
f(x) & -g(x)=\left(4 x^{2}+3 x-1\right)-(6 x+2)
\end{aligned}
$$

## 6-5 Operations with Functions

## Check It Out! Example 1a

Given $f(x)=5 x-6$ and $g(x)=x^{2}-5 x+6$, find each function.
$(f+\mathbf{g})(\mathbf{x})=\chi^{2}$

$$
\begin{aligned}
& (f-\mathbf{g})(\mathbf{x})=-x^{2}+10 x-12 \\
& 5 x-6-\left(x^{2}-5 x+6\right)
\end{aligned}
$$

## 6-5 Operations with Functions

When you divide functions, be sure to note any domain restrictions that may arise.

## 6-5 Operations with Functions

## Example 2A: Multiplying and Dividing Functions

 Given $f(x)=6 x^{2}-x-12$ and $g(x)=2 x-3$, find each function.$(\boldsymbol{f g})(\mathbf{x})=12 x^{3}-20 x^{2}-21 x+36$

$$
\left(6 x^{2}-x-12\right)(2 x-3)
$$

6-5 Operations with Functions
Example 2B: Multiplying and Dividing Functions

$$
\begin{aligned}
\left(\frac{f}{g}\right)(x) & =\frac{6 x^{2}-x-12}{2 x-3} \\
& =\frac{(2 x-3)(3 x+4)}{(2 x-3)} \\
\left(\frac{f}{g}\right)(x) & =3 x+4, x \neq 3 / 2
\end{aligned}
$$

## 6-5 Operations with Functions

## Check It Out! Example 2a

Given $f(x)=x+2$ and $g(x)=x^{2}-4$, find each function.
$(\mathbf{f g})(\mathbf{x})=x^{3}+2 x^{2}-4 / x-8$
$\left(\frac{g}{f}\right)(x)=X-2, \quad x \neq-2$

## 6-5 Operations with Functions

Another function operation uses the output from one function as the input for a second function. This operation is called the composition of functions.

## Composition of Functions

The composition of functions $f$ and $g$ is notated

$$
(f \circ g)(x)=f(g(x)) \text {. "f of } g \circ f x
$$

The domain of $(f \circ g)(x)$ is all values of $x$ in the domain of $g$ such that $g(x)$ is in the domain of $f$.

## 6-5 Operations with Functions

## Caution!

Be careful not to confuse the notation for multiplication of functions with composition $f g(x) \neq f(g(x))$
$(f \circ g)(x) \neq(f \circ g)(x)$

6-5 Operations with Functions
Example 3A: Evaluating Composite Functions Given $f(x)=2^{x}$ and $g(x)=7-x$, find each value.

$$
\begin{aligned}
& \mathbf{f ( g ( 4 )})=f(3)=2^{3}=8 \\
& (f \circ g)(4) \\
& \mathbf{g}(\sqrt[f(4)]{\hat{I}})=g(16)=-9 \\
& f(4)=2^{4}=16
\end{aligned}
$$

## 6-5 Operations with Functions

## Check It Out! Example 3a

Given $f(x)=2 x-3$ and $g(x)=x^{2}$, find each value.

$$
\begin{aligned}
& f(\underline{g(3)})=15 \\
& f(9)=
\end{aligned}
$$

$g(f(3))=9$

6-5 Operations with Functions
Example 4A: Writing Composite Functions Given $f(x)=x^{2}-1$ and $g(x)=\frac{x}{1-x}$, write each composite function. State the domain of each.

$$
\begin{aligned}
\text { each. } & \begin{aligned}
f(\mathbf{g}(\mathbf{x})) & =\frac{2 x-1}{\left(\frac{x}{1-x)^{2}}\right.}, x \neq 1 \\
f\left(\frac{x}{1-x}\right) & =\left(\frac{x}{1-x}\right)^{2}-1 \\
& =\frac{x^{2}}{(1-x)^{2}}-\frac{1(1-x)^{2}}{\left(1-x^{2}\right)}=\frac{x^{2}-\left(1-2 x+y^{2}\right)}{(1-x)^{2}}
\end{aligned} .
\end{aligned}
$$

6-5 Operations with Functions
Example 4B: Writing Composite Functions Given $f(x)=x^{2}-1$ and $g(x)=\frac{x}{1-x}$, write each composite function. State the domain of

$$
\begin{aligned}
& \text { each. } \\
& \mathbf{g}(f(x))=\frac{x^{2}-1}{2-x^{2}}, x \neq \pm \sqrt{2} \\
& g\left(x^{2}-1\right)=\frac{x^{2}-1}{1-\left(x^{2}-1\right)}=\frac{x^{2}-1}{2-x^{2}}
\end{aligned}
$$

6-5 Operations with Functions
Check It Out! Example 4a
Given $f(x)=3 x-4$ and $g(x)=\sqrt{x}+2$, write each composite. State the domain of each.

$$
\begin{gathered}
\mathbf{f}(\mathbf{g}(\mathbf{x}))=3 \sqrt{x}+2, \quad x \geq 0^{N^{2}}[0, \infty) \\
\mathbf{g}(\mathbf{f}(\mathbf{x}) \mathbf{)}=\sqrt{3 x-4}+2,[4 / 3, \infty) \\
3 x-4 \geq 0
\end{gathered}
$$

