6-4 Transforming Functions

In previous lessons, you learned how to transform several types of functions. You can transform piecewise functions by applying transformations to each piece independently. Recall the rules for transforming functions given in the table.

6-4 Transforming Functions

Transformations of $\boldsymbol{f}(\boldsymbol{x})$	
Horizontal Translation	Vertical Translation
$f(x) \rightarrow f(x-h)$	$f(x) \rightarrow \boldsymbol{f}(x)+k$
left for $h<0 \quad$ right for $h>0$	down for $k<0 \quad$ up for $k>0$
Reflection Across y-axis	Reflection Across x-axis
$\boldsymbol{f}(x) \rightarrow f(-x)$	$f(x) \rightarrow-f(x)$
The graph is reflected across the y-axis.	The graph is reflected across the x-axis.
Horizontal Stretch/Compression	Vertical Stretch/Compression
$f(x) \rightarrow f\left(\frac{1}{b} x\right)$	$f(x) \rightarrow a f(x)$
stretch for $b>1$	
compression for $0<b<1$	

6-4 Transforming Functions

* Caution*

Horizontal transformations change both the rules and the intervals of piecewise functions. Vertical transformations change only the rules.

6-4 Transforming Functions

Example 1: Transforming Piecewise Functions
Given $f(x)= \begin{cases}-\frac{1}{2} x & \text { if } x<0 \\ \frac{1}{2} x^{2} & \text { if } x \geq 0\end{cases}$
write the
rule $\mathbf{g}(x)$, a vertical stretch by a factor of 3 .
$\left\{-\frac{3}{2} x, x<0 \quad g(x)=3 f(x)\right.$

6-4 Transforming Functions
Example 2: Transforming Piecewise Functions Given $f(x)=\left\{\begin{array}{l}x-4 \\ \underset{2(x-4)+3}{ }+3 \text { if } x>0 \\ 2 x+3 \text { if } x \leq 0\end{array} \quad\right.$ write the rule $g(x)$, a horizontal translation of $f(x) 4$ units right.

$$
g(x)=f(x-4)
$$

6-4 Transforming Functions

Check It Out! Example $1 f(x) \quad g(x)$
\boldsymbol{x} if $\mathbf{x} \mathbf{x}$ (1 $x-3$ if $x>1$
write the rule
for $g(x)$, a horizontal stretch of $f(x)$ by a factor of 2.

$$
g(x)=f\left(\left(\frac{1}{2} x\right)\right.
$$

$$
g(x)= \begin{cases}\frac{1}{4} x^{2}, & x \leq 2 \\ \frac{1}{2} x-3, & x>2\end{cases}
$$

6-4 Transforming Functions

$$
\begin{aligned}
& \text { a) } g(x)=f(x+6) \\
& g(x)= \begin{cases}x+3, & x \leq-6 \\
4 x+24, & x>-6\end{cases}
\end{aligned}
$$

b)

$$
\begin{array}{ll}
h(x)=f(41 x) & \\
h(x)=\left\{\begin{array}{cl}
4 x-3, & x \leq 0 \\
16 x, & x>0
\end{array}\right.
\end{array}
$$

6-4 Transforming Functions
c)

$$
\begin{aligned}
& p(x)=f(x)-3 \\
& p(x)= \begin{cases}x-6, & x \leq 0 \\
4 x-3, & x>0\end{cases}
\end{aligned}
$$

6-4 Transforming Functions

When functions are transformed, the intercepts may or may not change. By identifying the transformations, you can determine the intercepts, which can help you graph a transformed function.

6-4 Transforming Functions

Effects of Transformations on Intercepts of $\boldsymbol{f}(\boldsymbol{x})$

Horizontal Stretch or Compression by a Factor of \boldsymbol{b}	Vertical Stretch or Compression by a Factor of a
x-intercepts are multiplied by b. y-intercept stays the same.	x-intercepts stay the same. y-intercept is multiplied by a.

6-4 Transforming Functions

Reflection Across \boldsymbol{y}-axis	Reflection Across \boldsymbol{X}-axis
 x-intercepts are negated. \boldsymbol{y}-intercept stays the same.	 x-intercepts stay the same. y-intercept is negated.

6-4 Transforming Functions
Example 3A: Identifying Intercepts
Identify the x - and y-intercepts of $f(x)$. Without graphing $g(x)$, identify its x - and y intercepts.
$\mathbf{f}(\mathbf{x})=\mathbf{- 2 x}-\mathbf{4} ; \mathbf{g}(\mathbf{x})=f\left(\frac{1}{2} x\right)$ horizontal stretch
x-int: $(-2,0) \quad x-i n t:(-4,0)$ by 2

$$
y \text {-int: }(0,-4) \mid y \text {-int: }(0,-4)
$$

6-4 Transforming Functions
Example 3B: Identify Intercepts
$\mathbf{f}(\mathbf{x})=\mathbf{x}^{\mathbf{2}}-\mathbf{1} ; \mathbf{g}(\mathbf{x})=\mathbf{f}(-\mathbf{x}) \quad$ reflection in y-axis

$$
\left.\begin{array}{r}
x \text {-int: }(1,0) \\
(-1,0) \\
y \text {-int: }(0,-1)
\end{array} \right\rvert\, \begin{array}{r}
(-1,0) \\
(1,0) \\
(1, \operatorname{lnt}:(0,-1)
\end{array}
$$

6-4 Transforming Functions
Check It Out! Example 3A
Identify the x - and y-intercepts of $f(x)$. Without graphing $g(x)$, identify its x - and y intercepts.

$$
\begin{array}{l|ll}
\mathbf{f}(\mathbf{x})=\frac{\mathbf{2}}{\mathbf{3}} \mathbf{x}+\mathbf{4} & \text { and } \mathbf{g}(\mathbf{x})=-\mathbf{f}(\mathbf{x}) \\
x \text {-int: }(-6,0) & \text { reflection in } \\
y \text {-int: }(-6,0) & x \text {-axis } \\
y \text {-int }(0,4) & y \text {-int: }(0,-4)
\end{array}
$$

6-4 Transforming Functions
Check It Out! Example ib

$$
\left.\begin{gathered}
\mathbf{f}(\mathbf{x})=\mathbf{x}^{2}-\mathbf{9} \text { and } \mathbf{g (x)}=\frac{1}{3} \mathbf{f}(\mathbf{x}) \\
(3,0),(-3,0) \\
(0,-9)
\end{gathered} \right\rvert\, \begin{gathered}
\text { vertical compression } \\
(3,0),(-3,0) \\
(0,-3)
\end{gathered}
$$

6-4 Transforming Functions

Example 4: Problem-Solving Application
Coco's Coffee charges different prices based on the number of pounds purchased. The pricing scale is modeled by the function below, where w is the weight in pounds purchased.

$$
p(w)= \begin{cases}9 w & \text { if } 0<w<3 \\ 27+7.5(w-3) & \text { if } 3 \leq w<6 \\ 49.5+6(w-6) & \text { if } w \geq 6\end{cases}
$$

6-4 Transforming Functions

Example 4 Continued

Orders placed directly through the Web site are discounted by $\frac{1}{3}$, but a shipping fee of $\$ 2.50$ is added. Write a pricing function for orders placed through the Web site.

$$
q(w)= \begin{cases}q(w)=\frac{2}{3} p(w)+2.50 \\ 6 w+2.5,0<w<3 \\ 20.5+5(w-3), & 3 \leq w \\ 35.5+4(w-6), & w \geq 6\end{cases}
$$

6-4 Transforming Functions

$$
\begin{aligned}
& \frac{2}{3}(9 w)+2.50 \\
& \frac{2}{3}(\underline{27}+\underline{7.5(w-3)})+2.50 \\
& 18+5(w-3)+2.50
\end{aligned}
$$

