5-6 Radical Expressions and Rational Exponents

A rational exponent is an exponent that can be expressed as $\frac{m}{n}$, where m and n are integers and $\mathrm{n} \neq 0$. Radical expressions can be written by using rational exponents.

Rational Exponents
For any natural number n and integer m,

WORDS	NUMBERS	ALGEBRA
The exponent $\frac{1}{n}$ indicates the nth root.	$16^{\frac{1}{4}}=\sqrt[4]{16}=2$	$a^{\frac{1}{n}}=\sqrt[n]{a}$
The exponent $\frac{m}{n}$ indicates the nth root raised to the m th power.	$8^{\frac{2}{3}}=(\sqrt[3]{8})^{2}=2^{2}=4$	$a^{\frac{m}{n}}=(\sqrt[n]{a})^{m}=\sqrt[n]{a^{m}}$

5-6 Radical Expressions and Rational Exponents

Example 1: Writing $E_{\text {expressions in Radical Form }}$

 Write the expression (-32) ${ }^{\frac{3}{5}}$ in radical form and simplify.
$(-2)^{3}$

5-6 Radical Expressions and Rational Exponents
Check It Out! Example Ia
Write the expression $4^{\frac{5}{2}}$ in radical form, and simplify.

$$
(\sqrt{4})^{5}=2^{5}=32
$$

5-6 Radical Expressions and Rational Exponents

Check It Out! Example ib
Write the expression $625^{\frac{3}{4}}$ in radical form, and simplify.

$$
(\sqrt[4]{625})^{3}=5^{3}=125
$$

5-6 Radical Expressions and Rational Exponents

Example 2: Writing Expressions by Using Rational Exponents
Write each expression by using rational exponents.
A. $\sqrt[8]{13^{4}}=13^{\frac{4}{8}}=13^{1 / 2}$
B. $\sqrt[5]{13^{15}}=13^{3}=2197$

5-6 Radical Expressions and Rational Exponents
Check It Out! Example 3
Write each expression by using rational exponents.
a. $(\sqrt[4]{81})^{3}$
b. $\sqrt[3]{10^{9}}$
c. $\sqrt[4]{5^{2}}$

5-6 Radical Expressions and Rational Exponents

Example 4

Simplify each expression.
a. $7^{\frac{7}{9}} \cdot 7^{\frac{11}{9}}$

b. $\frac{16^{\frac{3}{4}}}{6^{5}}=16^{2 / / 4}$

C. $(-8)^{-\frac{1}{3}}=\frac{1}{(1)^{1 / 3}}$
$=\frac{1}{\sqrt[3]{-8}}=\left(-\frac{1}{2}\right.$

5-6 Radical Expressions and Rational Exponents

Example 4
Simplify each expression. Your answer should contain only positive exponents with no fractional exponents in the denominator.
d. $x^{1 / 4} \cdot x^{7 / 3}$

f. $\frac{3 y^{2 / 5}}{9 y^{1 / 2}}=\frac{1 y^{4 / 10}}{3 y^{5 / 0}}$

5-6 Radical Expressions and Rational Exponents Example 4
$\begin{aligned} & \text { Simplify each expression. Your answer } \\ & \text { should contain only positive exponents }\end{aligned}$
$\begin{aligned} & \text { with no fractional exponents in the } \\ & \text { denominator. }\end{aligned}$
$\begin{aligned} & x^{2} \\ & x^{5}\end{aligned}=x^{2}$
g. $6 x^{3 / 4}$ $\overline{12 x^{-1 / 2}}$ $\frac{x^{5 / 4}}{2}$

$$
\text { h. } \begin{array}{ll}
\frac{x^{3 / 5}}{x^{2 / 9}} & \frac{\left(343 x y^{2}\right)^{1 / 3}\left(49 x^{3 / 5} y\right)^{3 / 2}}{14 x^{4 / 7} y^{8 / 3}} \\
x^{17 / 45}
\end{array}
$$

