5-6 Radical Expressions and Rational Exponents

We are already familiar with finding the square root of a number. Squaring and square rooting are inverses of each other. There are also roots that correspond to larger powers.

5 and -5 are square roots of 25 because $5^{2}=25$ and $(-5)^{2}=25$
2 is the cube root of 8 because $2^{3}=8$.
2 and -2 are fourth roots of 16 because $2^{4}=16$ and $(-2)^{4}=16$.
米 a is the nth root of b if $a^{n}=b$.

5-6 Radical Expressions and Rational Exponents

The nth root of a real number a can be written as the radical expression $\sqrt[n]{a}$, where n is the index (plural: indices) of the radical and a is the radicand.

When a number has more than one root, the radical sign indicates only the principal, or positive, root.
When a radical sign shows no index, it represents a square root.

Numbers and Types of Real Roots		
Case	Roots	Example
Odd index	1 real root	The real 3rd root of 8 is 2.
Even index; positive radicand	2 real roots	The real 4th roots of 16 are ± 2.
Even index; negative radicand	0 real roots	-16 has no real 4th roots.
Radicand of 0	1 root of 0	The 3rd root of 0 is 0.

5-6 Radical Expressions and Rational Exponents

Example 1: Finding Real Roots

Find all real roots.
A. sixth roots of 64

A positive number has two real sixth roots. Because $2^{6}=64$ and $(-2)^{6}=64$, the roots are 2 áner-2.=64
B. cube roots of $\mathbf{- 2 1 6}=-6$

A negative n^{3} umber has one real cube root. Because $(-6)^{3}=-216$, the root is -6 .
C. fourth roots of $\mathbf{- 1 0 2 4}$

A negative number has no peal fourth roots.

5-6 Radical Expressions and Rational Exponents

The properties of square roots you already know also apply to nth roots.

Keep in mind that in order for a radical expression to be completely simplified, the following must be true:

- For an nth root, the radicand has no factors that are perfect nth.
- There are no fractions in the radicand.
- There are no radicals in the denominator.

5-6 Radical Expressions and Rational Exponents
Simplifying Radical
(1) $\sqrt{24}=\sqrt{4} \cdot \sqrt{6}=2 \sqrt{6}$
(2) $\sqrt[3]{-162}=\sqrt[3]{-27} \cdot \sqrt[3]{6}=-3 \sqrt[3]{6}$
(5)

$$
\begin{aligned}
\sqrt[4]{128 n^{8}} & \left.=\sqrt[4]{16} \cdot \sqrt[4]{8} \cdot \sqrt[4]{n^{8}}(n)_{2}\right)^{n} r^{\prime \prime} \\
& =2 n^{2} \sqrt[4]{8}
\end{aligned}
$$

5-6 Radical Expressions and Rational Exponents

$$
\sqrt[5]{r^{5} T^{2}}
$$

(7) $\sqrt[5]{224 r^{7}}=\sqrt[5]{32} \cdot \sqrt[5]{7} \cdot \sqrt[5]{r^{5}} \cdot \sqrt[5]{r^{2}}$
(13) $\sqrt[4]{128 x^{7} y^{9}}=\sqrt[4]{16} \cdot \sqrt[4]{8} \cdot \sqrt[4]{x^{4}} \cdot \sqrt[4]{x^{3} \cdot \sqrt[4]{y^{8}}} \sqrt[4]{y}$

$$
2 x y^{2} \sqrt[4]{8 x^{3} y}
$$

5-6 Radical Expressions and Rational Exponents
(5) $\sqrt[6]{448 x^{7} y^{17}}=2 x y^{2} \sqrt[6]{7 x y^{5}}$

Adding, Suptr, Mult.
9$)$

$$
\begin{aligned}
& -3 \sqrt[3]{-3}+2 \sqrt[3]{162}+3 \sqrt[3]{81} \\
& -3 \sqrt[3]{-1 \cdot \sqrt[3]{3}} 2 \cdot \sqrt[3]{27} \cdot \sqrt[3]{6}+3 \sqrt[3]{27} \cdot \sqrt[3]{3} \\
& 3 \sqrt[3]{3}+6 \sqrt[3]{6}+9 \sqrt[3]{3} \quad 12 \sqrt[3]{3}+6 \sqrt[3]{6}
\end{aligned}
$$

5-6 Radical Expressions and Rational Exponents
Dividing
(21) $\frac{\sqrt[4]{5}}{\sqrt[4]{27}} \cdot \frac{\sqrt[4]{3}}{\sqrt[4]{3}}=\frac{4}{\sqrt[4]{81}}=\underset{\substack{\text { perfltith } \\ \text { forth }}}{\left(\frac{4 \sqrt{15}}{12}\right)}$

