5-4 Rational Functions

A rational function is a function whose rule can be written as a ratio of two polynomials.

The parent rational function is $f(x)=\frac{1}{x}$. Its graph is a hyperbola, which has two separate branches. You will learn more about hyperbolas later in this course.

5-4 Rational Functions

$$
\operatorname{as} x \rightarrow \infty, f(x) \rightarrow 0
$$

The function $f(x)=\frac{1}{x}$ has a vertical asymptote at $x=0$ and a horizontal asymptote at $\mathrm{y}=0$.

\qquad $a s x \rightarrow-\infty, f(x) \rightarrow 0$

5-4 Rational Functions

The rational function $f(x)=\frac{1}{x}$ can be transformed by using methods similar to those used to transform other types of functions.

5-4 Rational Functions

Example 1: Transforming Rational Functions
Using the graph of $f(x)=\frac{1}{x}$ as a guide, describe the transformation and graph each function.
A. $\mathbf{g}(\mathrm{x})=\frac{1}{\mathrm{x}+2}$

B. $\mathbf{g}(\mathrm{x})=\frac{1}{\mathrm{x}}-\mathbf{3}$

5-4 Rational Functions

Check It Out! Example 1

Using the graph of $f(x)=\frac{1}{x}$ as a guide, describe the transformation and graph each function.
a. $g(x)=\frac{1}{x+4}$
$C h=-4$
$k \div 0$

Holt McDougal Algebra 2
Copyright Θ by Holt Mc Dougal. All Rights Reserved.

5-4 Rational Functions

The values of h and k affect the locations of the asymptotes, the domain, and the range of rational functions whose graphs are hyperbolas.

Rational Functions

For a rational function of the form $f(x)=\frac{a}{x-h}+k$,

- the graph is a hyperbola.
- there is a vertical asymptote at the line $x=h$, and the domain is $\{x(1 x \neq h) \quad(-\infty, h) \cup(h, \infty)$
- there is a horizontal asymptote at the line $y=k$, and the range is $\{y \mid y \neq k\}$. $(-\infty, k)$ $\nu\left(k, \sigma^{\circ}\right)$

5-4 Rational Functions

Example 2: Determining Properties of Hyperbolas I dentify the asymptotes, domain, and range of the function $g(x)=\frac{1}{x+3}-2$.

Vertical asymptote: $\quad x=-3$
Domain: $X \neq-3$
$\begin{aligned} & \text { Horizontal asymptote: } \\ & \text { Range: } y \neq-2\end{aligned} \quad y=-2$
Range: $V \neq-2$
Check Graph the function on a graphing calculator.

5-4 Rational Functions

Check It Out! Example 2

I dentify the asymptotes, domain, and range of the function $g(x)=\frac{1}{x-3}-5$.

Vertical asymptote:
Domain:
Horizontal asymptote:
Range:
Check Graph the function on a graphing calculator.

5-4 Rational Functions

A discontinuous function is a function
whose graph has one or more gaps or breaks.
The hyperbola graphed in Example 2 and many other rational functions are discontinuous functions.

A continuous function is a function whose graph has no gaps or breaks. The functions you have studied before this, including linear, quadratic, and polynomial are continuous functions.

5-4 Rational Functions

The graphs of some rational functions are not hyperbolas. Consider the rational function $f(x)=\frac{(x-3)(x+2)}{x+1}$ and its graph.
The numerator of this $/=$ function is 0 when $x=3$ or $x=-2$. Therefore, the function has x-intercepts at
-2 and 3 . The denominator of this function is 0 when $x=-1$. As a result, the graph of the function has a vertical asymptote at the line $x=-1$.

5-4 Rational Functions

Zeros and Vertical Asymptotes Rational Functions

If $f(x)=\frac{p(x)}{q(x)}$, where p and q are polynomial functions in standard form with no common factors other than 1 , then the function f has

- zeros at each real value of x for which $p(x)=0$.
- a vertical asymptote at each real value of x for which $q(x)=0$.

5-4 Rational Functions

Example 3: Graphing Rational Functions with Vertical Asymptotes

I dentify the zeros and vertical asymptotes of $f(x)=\frac{\left(x^{2}+3 x-4\right)}{x+3}$.

Step 1 Find the zeros and vertical asymptotes.
$f(x)=\frac{(x+4)(x-1)}{x+3} \quad$ Factor the numerator.
Zeros: - 4 and 1
The numerator is 0 when $x=-4$ or $x=1$.

Vertical asymptote: $x=-3$
The denominator is 0 when $x=-3$.

5-4 Rational Functions

Example 3 Continued

I dentify the zeros and vertical asymptotes of $f(x)=\frac{\left(x^{2}+3 x-4\right)}{x+3}$.

Step 2 Graph the function.
Plot the zeros and draw the asymptote. Then make a table of values to fill in missing points.

Vertical asymptote: $x=-3$

\boldsymbol{X}							
\boldsymbol{Y}							

5-4 Rational Functions

Check It Out! Example 3

I dentify the zeros and vertical asymptotes of $f(x)=\frac{\left(x^{2}+7 x+6\right)}{x+3}$.

Step 1 Find the zeros and vertical asymptotes.
$f(x)=\frac{(x+6)(x+1)}{x+3} \quad$ Factor the numerator.
Zeros: - 6 and -1
The numerator is 0 when
$x=-6$ or $x=-1$.

Vertical asymptote: $x=-3$
The denominator is 0 when $x=-3$.

5-4 Rational Functions

Check It Out! Example 3 Continued
I dentify the zeros and vertical asymptotes of $f(x)=\frac{\left(x^{2}+7 x+6\right)}{x+3}$.

Step 2 Graph the function.
Plot the zeros and draw the asymptote. Then make a table of values to fill in missing points.

Vertical asymptote: $x=-3$

x							
y							

