Warm Up

Complete the table summarizing the notes on 5.1 Variation Functions

Type of Variation	Equation that describes relationship
y varies directly as x	y= kx
y varies inversely as x	Y=X
y varies jointly as x and z	Y= KXZ
y varies inversely as x and directly as z	Y= KZ

- **1.** The volume V of a pyramid varies jointly as the area of the base B and the height h, and V = 24 ft³ when B = 12 ft² and h = 6 ft. Find B when V = 54 ft³ and h = 9 ft.
- 2. The cost per person c of chartering a tour bus varies inversely as the number of passengers n. If it costs \$22.50 per person to charter a bus for 20 passengers, how much will it cost per person to charter a bus for 36 passengers?
- 3. The pressure *P* of a gas varies inversely as its volume *V* and directly as the temperature *T*. A certain gas has a pressure of 2.7 atm, a volume of 3.6 L, and a temperature of 324 K. If the volume of the gas is kept constant and the temperature is increased to 396 K, what will the new pressure be? 3.3 atm

$$P = \frac{kT}{V}$$

$$P = \frac{kT}{V}$$

$$\frac{3}{3.6}$$

$$k = \frac{PV}{T}$$
 $\frac{P}{1} = \frac{P_2V_2}{12}$
 $\frac{1}{2.7(3.6)} = \frac{P(3.6)}{396}$

39.
$$Y=K\times Z$$
 $I=Kd+12.50=2500.$
 $X=0.02$

$$f = k \times 2^{2}$$

$$\frac{1}{189} = \frac{1}{2}$$

$$\frac{1}{189} = \frac{1}{2}$$

5.2 Multiplying & Dividing Rational Expressions

A rational expression is a quotient of two polynomials.

Before we can multiply and divide rational expressions, let's first see how we <u>simplify</u> rational expressions.

Simplifying Rational Expressions

To simplify a rational expression, divide out common <u>factors</u> that appear in the <u>numerator and denominator</u>. Because you're looking for common factors, always remember to FACTOR FIRST!! Also make note of when the expression is undefined.

Caution!

When identifying values for which a rational expression is undefined, identify the values of the variable that make the original denominator equal to 0.

Examples: Simplify. Identify any values for which the expression is undefined.

When does the denom =
$$0$$
?

$$x^2 - 4x - 12 \quad (x + 2)$$

$$x^2 - 4 \quad (x + 2)$$

$$x - 2 \quad (x - 2)$$

$$x - 3 \quad (x - 2)$$

$$x - 4 \quad (x -$$

Multiplying Rational Expressions

- · factor all numerators and denominators completely
- simplify as you go by dividing out common factors of the numerators and denominators
- multiply ACROSS
- · leave answers in factored form

Examples

Assume that all expressions are defined.

(1)
$$\frac{n^5}{n-6} \cdot \frac{n^2-6n}{n^8} = \frac{n^8}{n^5} \cdot \frac{n^2(n-6)}{n^8} = \frac{n^8}{n^2}$$

$$\frac{x^2 - 5x - 24}{6x + 2x^2} \cdot \frac{5x^2}{x - 8} = \frac{(2x^2 + 5x^2)}{2x^2 + 5x^2} \cdot \frac{5x^2}{2x^2 - 6x}$$

(3)
$$\frac{40-10x}{x^2-6x+8} \cdot \frac{x+3}{5x+15}$$

Dividing Rational Expressions

Examples

Assume that all expressions are defined.

(1)
$$\frac{x+2}{x+3} \div \frac{x^2 + x - 12}{x^2 - 9}$$

(2)
$$\frac{3x+6}{x^2-9} \div \frac{6x^2+12x}{4x+12}$$

(3)
$$\frac{2x^2 - 7x - 4}{x^2 - 9} \div \frac{4x^2 - 1}{8x^2 - 28x + 12} = \frac{4(x - 4)}{x + 3}$$