5-1 Variation Functions

You've studied many types of linear functions. One special type of linear function is called direct variation.
A direct variation is a relationship between two variables x and y that can be written in the form $y=k x$, where $k \neq 0$.

In this relationship, k is the constant of variation. For the equation $y=k x, y$ varies directly as x.

5-1 Variation Functions

A direct variation equation is a linear equation in the form $y=m x+b$, where $b=0$ and the constant of variation k is the slope. Because $b=0$, the graph of a direct variation always passes through the origin.

5-1 Variation Functions

Example 1: Writing and Graphing Direct Variation
Given: y varies directly as x, and $y=27$ when $x=6$. Write the direct variation function.

$$
\begin{array}{ll}
y=k x & y \text { varies directly as } x . \\
27=k(6) & \text { Substitute } 27 \text { for } y \text { and } 6 \text { for } x . \\
k=4.5 & \text { Solve for the constant of variation } k . \\
y=4.5 x & \begin{array}{l}
\text { Write the variation function by using } \\
\text { the value of } k .
\end{array}
\end{array}
$$

5-1 Variation Functions

Check It Out! Example 1
Given: y varies directly as x, and $y=6.5$ when $x=13$. Write the direct variation function.

5-1 Variation Functions

When you want to find specific values in a direct variation problem, you can solve for k and then use substitution or you can use the proportion derived below.
$y_{1}=k x_{1} \rightarrow \frac{y_{1}}{x_{1}}=k \quad$ and $\quad y_{2}=k x_{2} \rightarrow \frac{y_{2}}{x_{2}}=k \quad$ so, $\quad \frac{y_{1}}{x_{1}}=\frac{y_{2}}{x_{2}}$.

5-1 Variation Functions

Example 2: Solving Direct Variation Problems
The cost of an item in euros e varies directly as the cost of the item in dollars d, and $\mathrm{e}=3.85$ euros when $\mathrm{d}=\$ 5.00$. Find d when e = $\mathbf{1 0 . 0 0}$ euros.
Method 1 Find k.
$e=k d$
$3.85=k(5.00) \quad$ Substitute.
Write the variation function.

e	$=0.77 d$		Use 0.77 for k.
10.00	$=0.77 d$		Substitute 10.00 for e.
12.99	$\approx d$		Solve for d.

5-1 Variation Functions

Check It Out! Example 2
The perimeter P of a regular dodecagon varies directly as the side length s, and $P=18$ in. when s $=1.5$ in. Find s when $P=75$ in.

5-1 Variation Functions

A ioint variation is a relationship among three variables that can be written in the form $y=k x z$, where k is the constant of variation. For the equation $y=k x z, y$ varies jointly as x and z.

5-1 Variation Functions

Check It Out! Example 3

The lateral surface area L of a cone varies jointly as the area of the base radius r and the slant height I , and $\mathrm{L}=63 \pi \mathrm{~m}^{2}$ when $\mathrm{r}=3.5 \mathrm{~m}$ and $\mathrm{I}=18 \mathrm{~m}$. Find r to the nearest tenth when $L=8 \pi \mathrm{~m}^{2}$ and $\mathrm{I}=5 \mathrm{~m}$.

$$
L=k r l \quad r=1.6 \mathrm{~m}
$$

$$
k=\pi
$$

5-1 Variation Functions

Example 3: Solving Joint Variation Problems
The volume V of a cone varies jointly as the area of the base B and the height h, and $V=12 \pi \mathrm{ft}^{3}$ when $B=9 \pi \mathrm{ft}^{3}$ and $h=4 \mathrm{ft}$. Find B when $V=24 \pi \mathrm{ft}^{3}$ and $\mathrm{h}=9 \mathrm{ft}$.

Step 1 Find k $\mathrm{V}=\mathrm{kBh}$		Step 2 Use the variation function.	
$12 \pi=k(9 \pi)(4)$	Substitute.	$V=\frac{1}{3} B h$	Use $\frac{1}{3}$ for k
$\frac{1}{3}=k$	Solve for k.	$24 \pi=\frac{1}{3} \mathrm{~B}(9)$	Substitute.
		$8 \pi=\mathrm{B}$	Solve for B.
The base is $8 \pi \mathrm{ft}^{2}$.			
Holt McDougal Algebra 2		Copyright © by Hoth Mc D	alt All Eights Reserved

5-1 Variation Functions

A third type of variation describes a situation in which one quantity increases and the other decreases. For example, the table shows that the time needed to drive 600 miles decreases

Speed (mi/h)	Time (h)	Distance $(\mathbf{m i})$
30	20	600
40	15	600
50	12	600

This type of variation is an inverse variation. An inverse variation is a relationship between two variables x and y that can be written in the form $y=\frac{k}{x}$, where $k \neq 0$. For the equation $y=\frac{k}{x}$ y varies inversely as x.

5-1 Variation Functions

Example 4: Writing and Graphing Inverse Variation Given: y varies inversely as x, and $y=4$ $w h e n x=5$. Write the inverse variation function.

$$
\begin{array}{ll}
\mathrm{y}=\frac{\mathrm{k}}{\mathrm{x}} & \\
\mathrm{y}=\frac{\mathrm{k}}{5} & \text { varies inversely as } \mathrm{x} . \\
\mathrm{k}=20 & 5 \text { for } \mathrm{x} . \\
\mathrm{y}=\frac{20}{\mathrm{x}} & \\
\text { Solve for } \mathrm{k} . \\
\text { Srite the variation } y \text { and } \\
\text { Wormula. }
\end{array}
$$

5-1 Variation Functions

Check It Out! Example 4

Given: y varies inversely as x, and $y=4$ when $x=10$. Write the inverse variation function.

5-1 Variation Functions

When you want to find specific values in an inverse variation problem, you can solve for k and then use substitution or you can use the equation derived below.
$y_{1}=\frac{k}{x_{1}} \rightarrow y_{1} x_{1}=k \quad$ and $\quad y_{2}=\frac{k}{x_{2}} \rightarrow y_{2} x_{2}=k \quad$ so, $y_{1} x_{1}=y_{2} x_{2}$.

5-1 Variation Functions

Example 5: Sports Application $t=\frac{k}{s}$
The time t needed to complete a certain race varies inversely as the runner's average speed s. If a runner with an average speed of $8.82 \mathrm{mi} / \mathrm{h}$ completes the race in 2.97 h , what is the average speed of a runner who completes the race in 3.5 h ?
Method 1 Find k.

5-1 Variation Functions

Example 5 Continued
Method Use $t_{1} s_{1}=t_{2} s_{2}$.
$t_{1} s_{1}=t_{2} s_{2}$

$$
\begin{aligned}
(2.97)(8.82) & =3.5 \mathrm{~s} & & \text { Substitute. } \\
26.1954 & =3.5 \mathrm{~s} & & \text { Simplify } \\
7.48 & \approx s & & \text { Solve for } \mathrm{s} .
\end{aligned}
$$

So the average speed of a runner who completes the race in 3.5 h is approximately $7.48 \mathrm{mi} / \mathrm{h}$.

5-1 Variation Functions

Check It Out! Example 5

The time that it takes for a group of volunteers to construct a house varies inversely as the number of volunteers v. If 20 volunteers can build a house in 62.5 working hours, how many working hours would it take 15 volunteers to build a house?

5-1 Variation Functions

You can use algebra to rewrite variation functions in terms of k.

Direct Variation
Inverse Variation
$\underline{y=k x} \rightarrow k=\underbrace{\frac{y}{x}}$
$\underbrace{y=\frac{k}{x}}_{\text {Constant product }} \rightarrow k=\underbrace{x y}_{\text {xy }}$

Notice that in direct variation, the ratio of the two quantities is constant. In inverse variation, the product of the two quantities is constant.

5-1 Variation Functions

Example 6: Identifying Direct and Inverse Variation
Determine whether each data set represents a direct variation, an inverse variation, or neither.
A.

x	6.5	13	104
y	8	4	0.5

In each case $x y=52$. The product is constant, so this represents an inverse variation.
B.

x	5	8	12
y	30	48	72

In each case $y=6$. The ratio is conståt, so this represents a direct variation.

5-1 Variation Functions

Example 6: Identifying Direct and Inverse Variation Determine whether each data set represents a direct variation, an inverse variation, or neither.
C.

x	3	6	8
y	5	14	21

Sínce $x y$ and y are not coß̉stant, this îs neither a direct variation nor an inverse variation.

5-1 Variation Functions

Check It Out! Example 6
Determine whether each data set represents a direct variation, an inverse variation, or neither.

6 6.

x	3.75	15	5
y	12	3	9

6b.

x	1	40	26
y	0.2	8	5.2

5-1 Variation Functions

Example 7: Chemistry Application
The change in temperature of an aluminum wire varies inversely as its mass m and directly as the amount of heat energy E transferred. The temperature of an aluminum wire with a mass of 0.1 kg rises $5^{\circ} \mathrm{C}$ when 450 joules (J) of heat energy are transferred to it. How much heat energy must be transferred to an aluminum wire with a mass of $0.2 \mathbf{~ k g}$ raise its temperature $20^{\circ} \mathrm{C}$?

A combined variation is a relationship that contains both direct and inverse variation. Quantities that vary directly appear in the numerator, and quantities that vary inversely appear in the denominator.

5-1 Variation Functions

Example 7 Continued

Step 1 Find k.

ΔT	$=\frac{k E}{m}$	Combined variation
5	$=\frac{k(450)}{0.1}$	Substitute.
$\frac{1}{900}$	$=k$	Solve for k.

Step 2 Use the variation function.

$$
\begin{array}{ll}
\Delta T=\frac{\mathrm{E}}{900 \mathrm{~m}} & \text { Use } \frac{1}{900} \text { for } k \\
20=\frac{\mathrm{E}}{900(0.2)} & \text { Substitute. } \\
3600=\mathrm{E} & \text { Solve for } \mathrm{E}
\end{array}
$$

The amount of heat energy that must be transferred is 3600 joules (J).

5-1 Variation Functions

direct : $y=k x$
inversely'. $y=\frac{k}{x}$ Check It Out! Example $7 \quad V=\frac{k T}{p}$
The volume V of a gas varies inversely as the pressure P and directly as the temperature T. A certain gas has a volume of 10 liters (L), a temperature of 300 kelvins (K), and a pressure of 1.5 atmospheres (atm). If the gas is heated to 400 K , and has a pressure of 1 atm, what is its volume?

