

4-6 The Natural Base, *e* Recall the *compound interest formula* $A = P(1 + \frac{r}{n})^{nt}$, where *A* is the amount, *P* is the principal, *r* is the annual interest, *n* is the number of times the interest is compounded per year and *t* is the time in years. Suppose that \$1 is invested at 100% interest (*r* = 1) compounded *n* times for one year as represented by the function $f(n) = P(1 + \frac{1}{n})^n$.

4-6 The Natural Base, e		
Check It Out! Example 3		
What is the total amount for an investment of \$100 invested at 3.5% for 8 years and compounded continuously?		
$A = Pe^{rt}$		
$A = 100e^{0.035(8)}$	Substitute 100 for P, 0.035 for r, and 8 for t.	
A ≈ 132.31	Use the e ^x key on a 100e^(.035*8) 132.3129812 calculator.	
The total amount is \$132.31.		
Holt McDougal Algebra 2	Copyright © by Holt Mc Dougal. All Rights Reserved	

4-6 The Natural Base, e		
Check It Out! Example 4		
Determine how long it will take for 650 mg of a sample of chromium-51 which has a half-life of about 28 days to decay to 200 mg.		
Step 1 Find the decay constant for Chromium-51.		
$N(t) = N_0 e^{-kt}$	Use the natural decay function. t.	
$\frac{1}{2} = 1e^{-k(28)}$	Substitute 1 for N_0 ,28 for t, and $\frac{1}{2}$ for $N(t)$ because half of the initial quantity will remain.	
Holt McDougal Algebra 2	Copyright © by Holt Mc Dougal, All Rights Reserved.	

4-6 The Natural Base, e		
Check It Out! Example 4 Continued		
$\ln \frac{1}{2} = \ln e^{-28k}$	Simplify and take In of both sides.	
$\ln 2^{-1} = -28k$	Write $\frac{1}{2}$ as 2 $^{-1}$, and simplify the right side.	
-ln 2 = −28 <i>k</i>	$\ln 2^{-1} = -1 \ln 2 = -\ln 2.$	
$k = \frac{\ln 2}{28} \approx 0.0247$		
Holt McDougal Algebra 2	Copyright © by Holt Mc Dougal. All Rights Reserved.	

4-6 The Natural Base, e

Holt McDougal Algebra 2

Check It Out! Example 4 ContinuedStep 2 Write the decay function and solve for t. $N(t) = N_0 e^{-0.0247t}$ Substitute 0.0247 for k. $200 = 650e^{-0.0247t}$ Substitute 650 for N_0 and 200 for
N(t). $\ln \frac{200}{650} = \ln e^{-0.0247t}$ Take In of both sides. $\ln \frac{200}{650} = -0.0247t$ Simplify. $t = \frac{\ln \frac{200}{650}}{-0.0247} \approx 47.7$ It takes approximately 47.7 days to decay.

Copyright © by Holt Mc Dougal. All Rights Reserved

10