4.4 Factoring Polynomials

G Core Concept

The Factor Theorem

A polynomial f(x) has a factor x - k if and only if f(k) = 0.

Determine whether

(a)
$$x - 2$$
 is a factor of $f(x) = x^2 + 2x - 4$

a)
$$x-2$$
 is a factor of $f(x) = x^2 + 2x - 4$

$$2 \quad | 1 \quad 2 \quad - 4 \quad | MU \quad | MC \quad | f(2) \neq 0$$

$$2 \quad | 8 \quad | Because \quad remainder \quad | does \quad not = 0.$$

(b) x + 5 is a factor of $f(x) = 3x^4 + 15x^3 - x^2 + 25$.

$$\frac{-513}{3}$$
 $\frac{15}{-15}$ $\frac{-1}{0}$ $\frac{25}{5}$ $\frac{15}{5}$ $\frac{-25}{5}$ $\frac{15}{5}$ $\frac{-15}{5}$ $\frac{-15}$

Factoring, revisited.

What we already know......

Factor each polynomial completely.

a.
$$x^3 - 4x^2 - 5x$$

b.
$$3v^5 - 48v^3$$

c.
$$5z^4 + 30z^3 + 45z^2$$

Factor each polynomial completely.

a.
$$x^3 - 4x^2 - 5x$$
b. $3y^5 - 48y^3$
c. $5z^4 + 30z^3 + 45z^2$
 $\times (\chi^2 - 4\chi - 5)$
 $3y^3(y^2 - 16)$
 $5z^2(z^2 + 6z + 9)$
 $\chi(\chi - 5)(\chi + 1)$
 $3y^3(\gamma + 4)(\gamma - 4)$
 $5z^2(z + 6z + 9)$

$$3y^{3}(y^{2}-16)$$
 $3y^{3}(y+4)(y-4)$

$$5z^{2}(\underline{z^{2}+6z+9})$$

$$5z^{2}(z+3)^{2}$$

Check it Out!

Factor the polynomial completely.

A.
$$x^3 - 7x^2 + 10x$$

 $\chi(\chi^2 - 7\chi + 10)$
 $\chi(\chi - 2)(\chi - 5)$

 $3n^7 - 75n^5$

$$3n^{5}(n^{2}-25) = 3n^{5}(n+5)(n-5)$$

3.
$$8m^5 - 16m^4 + 8m^3 = 9m^3(m^2 - 2m + 1)$$

$$\begin{array}{c} (x+1) + 16 \times + 16 \\ (x+1) \times (x+$$

Factoring by Grouping

used for polynomials with four or more

5. terms.

Factor:
$$x^3 - x^2 - 25x + 25$$
.

$$\chi^{2}(x-1)$$
 -25(x-1)

$$(x-1)(x^2-25)$$

 $(x-1)(x+5)(x-5)$

Check it out!

Factor:
$$x^3 - 2x^2 - 9x + 18$$
.

Factor:
$$x^3 - 2x^2 - 9x + 18$$
.
 $\chi^2(x-2) - 9(x-2)$

$$(x-2)(x^2-9)$$

 $(x-2)(x+3)(x-3)$

Core Concept

Special Factoring Patterns

Sum of Two Cubes

$$a^3 + b^3 = (a + b)(a^2 - ab + b^2)$$

Perfect Cubes

Example

$$64x^3 + 1 = (4x)^3 + 1^3$$
$$= (4x + 1)(16x^2 - 4x + 1)$$

Difference of Two Cubes

$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

Example

$$27x^3 - 8 = (3x)^3 - 2^3$$
$$= (3x - 2)(9x^2 + 6x + 4)$$

Factor completely.

(a)
$$x^3 - b^3$$

$$(x-5)(\chi^2 + 5\chi + 25)$$

(b) **MERITAR**
$$16x^{5+}$$
 $54x^{2}$ $\frac{a^{3}+b^{3}=(a+b)(a^{2}-ab+b^{2})}{a:2x}$ $2x^{2}(2x)^{3}=8x^{3}$ $2x^{2}(2x)^{3}=8x^{3}$

Factor completely.

(a)
$$z^6 + 8 = (z^2 + 2)(z^4 - 2z^2 + 4)$$

(b)
$$2x^5 - 16x^2 =$$

Factoring Polynomials in Quadratic Form

$$a()^2 + b() + c$$

Example 5a

Factor $x^4 + 2x^2 - 63$ completely. $(x^2)^2 + 2(x^2) - 63$

$$(x^2+9)(x^2-7)$$

Example 5b
$$\sqrt{\sin^4 3a^2 + 22a^2 + 40}$$
 Factor $3x^4 + 22x^2 + 40$ completely.

$$(3\chi^2 + 10)(\chi^2 + 4)$$

Example 5c

Factor $3p^8 + 15p^5 + 18p^2$ completely.

$$\frac{3p^{2}(p^{6}+5p^{3}+6)}{3p^{2}(p^{3}+3)(p^{3}+2)}$$

Factor $16x^4 - 81$ completely. $a^2 - b^2 = (a+b)(a-b)$

$$a^2 - b^2 = (a+b)(a-b)$$

$$\frac{(4x^{2}+9)(4x^{2}-9)}{(4x^{2}+9)(2x+3)(2x-3)}$$

Check it Out! Examples

Factor each expression completely.

5a.
$$3x^4 - 3x^2 - 168$$

5b.
$$x^4 - 3x^2 - 10$$

5c.
$$4x^4 + 44x^2y^2 + 112y^4$$

5d.
$$49x^4 - 1$$

Additional Practice. Factor completely.

1.
$$a^3 + 27$$

2.
$$6z^5 - 750z^2$$

3.
$$x^3 + 4x^2 - x - 4$$

3.
$$x^3 + 4x^2 - x - 4$$
 4. $3y^3 + y^2 + 9y + 3$

6.
$$5w^6 - 25w^4 + 30w^2$$

Show that x + 3 is a factor of $f(x) = x^4 + 3x^3 - x - 3$. Then factor f(x)completely.

During the first 5 seconds of a roller coaster ride, the function $h(t) = 4t^3 - 21t^2 + 9t + 34$ represents the height h (in feet) of the roller coaster after t seconds. How long is the roller coaster at or below ground level in the first 5 seconds?

