Algebra 2 HonorsName_____Notes: 4.4Date_____Block____

Product Property of Logarithms

For any positive numbers m, n, and b ($b \neq 1$), the logarithm of a ______ is equal to the

_____ of the logarithms of its factors.

Example:

Example 1: Express as a single logarithm. Simplify, if possible.

(a) $\log_6 4 + \log_6 9$

- (b) $\log_5 625 + \log_5 25$
- (c) $\log_{1/3} 27 + \log_{1/3} \frac{1}{9}$

Quotient Property of Logarithms

For any positive numbers *m*, *n*, and b ($b \neq 1$), the logarithm of a ______ is equal to the

logarithm of the ______ the logarithm of the ______.

Example:

Example 2: Express as a single logarithm. Simplify, if possible.

(a) $\log_5 100 - \log_5 4$

(b) $\log_7 49 - \log_7 7$

Power Property of Logarithms

For any real number p and positive numbers a and b ($b \neq 1$), the logarithm of a ______ is

equal to the _____ of the exponent and the logarithm of the base.

Example:

Example 3: Express as a product. Simplify, if possible.

- (a) $\log_2 32^6$
- (b) $\log_8 4^{20}$
- (c) $\log 10^4$
- (d) $\log_5 25^2$

Inverse Properties of Logarithms and Exponents

For any base *b* such that b > 0 and $b \neq 1$,

$$\log_b b^x =$$
____ AND $b^{\log_b x} =$ ____

Example 4: Simplify each expression.

- (a) $\log_3 3^{11}$
- (b) log₃81
- (c) $5^{\log_5 10}$
- (d) $\log 10^{0.9}$
- (e) $2^{\log_2 8x}$

Change of Base Formula

For a > 0 and $a \neq 1$ and any base *b* such that b > 0 and $b \neq 1$, ______.

Example:

Example 5: Evaluate by using the change of base formula.

(a) $\log_{32} 8$

(b) $\log_9 27$

(c) $\log_8 16$