Remember that to *multiply* powers with the same base, you *add* exponents.

$b^m b^n = b^{m+n}$

Product Property of Logarithms			
	For any positive numbers m , n , and $b(b \neq 1)$,		
	WORDS	NUMBERS	ALGEBRA
	The logarithm of a product is equal to the sum of the logarithms of its factors.	$\log_3 1000 = \log_3(10 \cdot 100)$ = $\log_3 10 + \log_3 100$	$\log_b mn = \log_b m + \log_b n$

Example 1

Express as a single logarithm. Simplify, if possible. $\log_6 4 + \log_6 9 = 109_6 (21.9) = 109_6 36 = 2$ 4 + 2 $\log_5 625 + \log_5 25 = 109_5 15625 = 9$ $\log_{\frac{1}{3}} 27 + \log_{\frac{1}{3}} \frac{1}{9} = 109 \frac{1}{13} \frac{3}{9} = -1$

Holt McDougal Algebra 2

Remember that to *divide* powers with the same base, you *subtract* exponents

Because logarithms are exponents, subtracting logarithms with the same base is the same as finding the logarithms of the quotient with that base.

Ouotient	Proper	tv of Lo	garithms
Quotien			gantennis

For any positive numbers m, n, and $b(b \neq 1)$,

WORDS	NUMBERS	ALGEBRA
The logarithm of a q <u>uotient</u> is the logarithm of the <u>dividend minus</u> the logarithm of the divisor.	$\log_5\left(\frac{16}{2}\right) = \log_5 16 - \log_5 2$	$\log_b \frac{m}{n} = \log_b m - \log_b n$

Example 2: Subtracting Logarithms

Express $\log_5 100 - \log_5 4$ as a single logarithm. Simplify, if possible.

$$log_5\left(\frac{100}{4}\right) = log_5 25 = 2$$

Holt McDougal Algebra 2

Check It Out! Example 2

Express $\log_7 49 - \log_7 7$ as a single logarithm. Simplify, if possible.

Holt McDougal Algebra 2

 $(a^m)^n$

Because you can multiply logarithms, you can also take powers of logarithms.

Power Property of Logarithms			
Fo	For any real number <i>p</i> and positive numbers <i>a</i> and $b(b \neq 1)$,		
	WORDS	NUMBERS	ALGEBRA
The of pro exp the of	e logarithm a <u>powe</u> r is the oduct of the ponent and e logarithm the base.	log10 ³ log(10 • 10 • 10) log10 + log10 + log10 <mark>3</mark> log10	$\log_b a^p = p \log_b a$

Example 3: Simplifying Logarithms with Exponents

Express as a product. Simplify, if possible.

Check It Out! Example 3

Express as a product. Simplify, if possibly.

a.
$$\log_{5} 10^{4} = 4$$
 b. $\log_{5} 25^{2} = 4$
 $4 \log_{10} 10$ $2\log_{5} 25$

Exponential and logarithmic operations undo each other since they are inverse operations.

Inverse Properties of Logarithms and Exponents		
	For any base <i>b</i> such that $b > 0$ and $b \neq 1$,	
	ALGEBRA	EXAMPLE
	$\log_b b^x = x$	$\log_{10} 10^7 = 7$
	b ^{log} ⊳x = x	$10^{\log_{10}2} = 2$

Example 4: Recognizing Inverses

Simplify each expression.

a. log₃3¹¹

b.
$$\log_{3}(81)$$

 $\log_{3}(3^{4} - 4)$

c.
$$5^{\log_5 10} = 10$$

Holt McDougal Algebra 2

Check It Out! Example 4

a. Simplify log10^{0.9}

log 10^{0,9} 9

b. Simplify $2^{\log_2(8x)}$

0.9

8*x*

Holt McDougal Algebra 2

Most calculators calculate logarithms only in base 10 or base *e*. You can change a logarithm in one base to a logarithm in another base with the following formula.

Change of Base Formula			
	For $a > 0$ and $a \neq 1$ and any base b such that $b > 0$ and $b \neq 1$,		
	ALGEBRA	EXAMPLE	
	$\log_{b} x = \frac{\log_{a} x}{\log_{a} b}$	$\log_4 8 = \frac{\log_2 8}{\log_2 4}$	

Holt McDougal Algebra 2

Example 5: Changing the Base of a Logarithm

Holt McDougal Algebra 2

Check It Out! Example 5a

Evaluate log_o27.

Holt McDougal Algebra 2

Check It Out! Example 5b

Evaluate log₈16.

10gb X = 10ge X 10ga b

Holt McDougal Algebra 2