4-4 Properties of Logarithms

Remember that to multiply powers with the same base, you add exponents.

Product Property of Logarithms

For any positive numbers m, n, and $b(b \neq 1)$,

WORDS	NUMBERS	ALGEBRA		
The logarithm of a product is equal to the sum of the	$\log _{3} 1000=\log _{3}(10 \cdot 100)$ logarithms of its factors.	$=\log _{3} 10+\log _{3} 100$	\quad	$\log _{b} m n=\log _{b} m+\log _{b} n$
:---				

4-4 Properties of Logarithms

Example 1

Express as a single logarithm. Simplify, if possible.
$\log _{6} 4+\log _{6} 9=\log _{6}(4.9)=\log _{6} 36=2$

$\log _{\frac{1}{3}} 27+\log _{\frac{1}{3}} \frac{1}{9}=\log _{1 / 3} 3=-1$

4-4 Properties of Logarithms

Remember that to divide powers with the same base, you subtract exponents

Because logarithms are exponents, subtracting logarithms with the same base is the same as finding the logarithms of the quotient with that base.

4-4 Properties of Logarithms

Quotient Property of Logarithms

For any positive numbers m, n, and $b(b \neq 1)$,

WORDS	NUMBERS	ALGEBRA
The logarithm of a quotient is the		
logarithm of the dividend minus	$\log _{5}\left(\frac{16}{2}\right)=\log _{5} 16-\log _{5} 2$	$\log _{b} \frac{m}{n}=\log _{b} m-\log _{b} n$
the logarithm of the divisor.		

4-4 Properties of Logarithms
Example 2: Subtracting Logarithms
Express $\log _{5} 100-\log _{5} 4$ as a single logarithm. Simplify, if possible.

$$
\log _{5}\left(\frac{100}{4}\right)=\log _{5} 25=2
$$

4-4 Properties of Logarithms

Check It Out! Example 2

Express $\log _{7} 49-\log _{7} 7$ as a single logarithm. Simplify, if possible.

$$
\log _{7} 7=1
$$

4-4 Properties of Logarithms

Because you can multiply logarithms, you can also take powers of logarithms.

Power Property of Logarithms

For any real number p and positive numbers a and $b(b \neq 1)$,

WORDS	NUMBERS	ALGEBRA
The logarithm of a power is the product of the	$\log 10^{3}$	
log $(10 \cdot 10 \cdot 10)$		
exponent and the logarithm of the base.	$\log 10+\log 10+\log 10$	$3 \log 10$

4-4 Properties of Logarithms
Example 3: Simplifying Logarithms with Exponents

Express as a product. Simplify, if possible.
A. $\log _{2} 32^{6}$
B. $\log _{8} 4^{20}$
$6 \log _{2} 32$
$6(5)=30$
201 \square
$20(2 / 3)=40 / 3$

4-4 Properties of Logarithms
Check It Out! Example 3
Express as a product. Simplify, if possibly.
a. $\log _{5} 10^{4}=\angle 1$
b. $\boldsymbol{\operatorname { l o g }}_{5} \mathbf{2 5}=4$
$4 \log _{10} 10$
$2 \log _{5} 25$

4-4 Properties of Logarithms

Exponential and logarithmic operations undo each other since they are inverse operations.

Inverse Properties of Logarithms and Exponents

For any base b such that $b>0$ and $b \neq 1$,

ALGEBRA	EXAMPLE
$\log _{b} b^{x}=x$	$\log _{10} 10^{7}=7$
$b^{\log _{b} x}=x$	$10^{\log _{10} 2}=2$

4-4 Properties of Logarithms

Example 4: Recognizing Inverses

Simplify each expression.

a. $\log _{3} 3^{11}$

b. $\log _{3} 81$

$$
\log _{3} 4^{4}=4
$$

4-4 Properties of Logarithms

Check It Out! Example 4

a. Simplify $\log 10^{0.9}$
$\log 10_{0} 9$
0.9

b. Simplify $\mathbf{2}^{\log _{2}(8 x)}$

$$
2^{\log _{2}(88 X}
$$

$8 x$

4-4 Properties of Logarithms

Most calculators calculate logarithms only in base 10 or base e. You can change a logarithm in one base to a logarithm in another base with the following formula.

Change of Base Formula

For $a>0$ and $a \neq 1$ and any base b such that $b>0$ and $b \neq 1$,

ALGEBRA

$$
\log _{b} x=\frac{\log _{a} x}{\log _{a} b}
$$

EXAMPLE

$$
\log _{4} 8=\frac{\log _{2} 8}{\log _{2} 4}
$$

4-4 Properties of Logarithms
Example 5: Changing the Base of a Logarithm

$$
\left.\begin{aligned}
& \text { Evaluate } \log _{32} 8=\frac{3}{5} \\
& \log _{2} 8 \\
& \log _{2} 32
\end{aligned} \frac{3}{5} \right\rvert\, \frac{\log 8}{\log 32}=0.6
$$

4-4 Properties of Logarithms

Check It Out! Example 5a

Evaluate $\log _{9} 27$.

4-4 Properties of Logarithms
Check It Out! Example 5b

Evaluate $\mathbf{~}_{\mathbf{0}}^{8} \mathbf{1 6}$.

$$
\frac{\log _{2} 16}{\log _{2} 8}=\frac{4}{3}
$$

$$
\log _{k} x=\frac{\log _{a} x}{\log _{a} b}
$$

4-4 Properties of Logarithms
(19)

$$
\begin{aligned}
& \log _{3} 5^{2}=2.92 \\
& 2\left(\log _{3} 5\right. \\
& 2\left(\frac{\log 5}{\log 3}\right)=2(1.46)=2.92
\end{aligned}
$$

