Algebra 2 Honors Notes: 4.3

I. What is a logarithm?

Name	
Date	Block

Reading Math: Read $\log_b a = x$, as _____

Example 1:

Write each exponential equation in logarithmic form.

Exponential Equation	Logarithmic Form
$3^5 = 243$	
$25^{1/2} = 5$	
$10^4 = 10,000$	
$6^{-1} = \frac{1}{6}$	
$a^b = c$	
$9^2 = 81$	
$3^3 = 27$	
$x^0 = 1 \ (x \neq 0)$	

Example 2:

Write each logarithmic equation in exponential form.

Logarithmic Form	Exponential Equation
$\log_9 9 = 1$	
$\log_2 512 = 9$	
$\log_2 512 = 9$	
$\log_8 2 = \frac{1}{3}$	
$\log_4 \frac{1}{16} = -2$	
$\log_b 1 = 0$	
$\log_{10} 10 = 1$	
$\log_{12} 144 = 2$	
$\log_{1/2} 8 = -3$	

II. Special Properties of Logarithms

For any base *b*, such that b > 0 and $b \neq 1$.

Logarithmic Form	Exponential Form	Example
Logarithm of Base <i>b</i>		
Logarithm of 1		

Note: A logarithm with a base 10 is called a ______. If no base is written for a logarithm, the base is assumed to be 10.

III. Evaluating Logarithms Using Mental Math Example 3:

Evaluate by using mental math.

a)
$$\log 0.01 =$$

b) $\log_5 125 =$
c) $\log_5 \frac{1}{5} =$
d) $\log 0.00001 =$
e) $\log_{25} 0.04 =$
f) $\log_{125} 5 =$

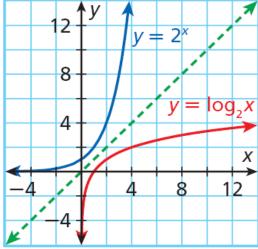
IV. Logarithmic Function

Because logarithms are the inverses of exponents, the inverse of an exponential function, such as $y = 2^x$, is a *logarithmic function*, such as $y = \log_2 x$.

 $f(x) = \log_b x$ Domain:

Range:

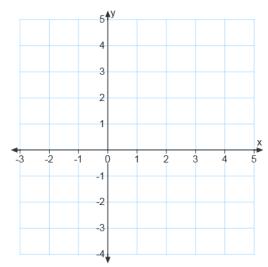
Vertical Asymptote:



Example 4A: Graphing Logarithmic Functions

Use the given x – values {-2, -1, 0, 1, 2} to graph $f(x) = 1.25^x$. Then graph its inverse. State the domain and range of the inverse function.

x	-2		-1		0		1		2		
$f(x) = 1.25^x$											
x											
$f^{-1}(x) = \log_1 x$.25 X										

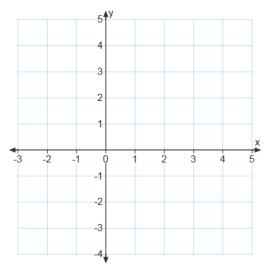


Example 4B: Graphing Logarithmic Functions

Use the given x – values {-2, -1, 0, 1, 2} to graph $f(x) = \left(\frac{1}{2}\right)^x$. Then graph its inverse. State the

domain and range of the inverse function.

x	_	2	_	-1	0	1	1	1	2]
$f(x) = \left(\frac{1}{2}\right)^x$										
x										
$f^{-1}(x) = \log_{1/2}(x)$	/ ₂ x									



Example 5: Food Application

The table lists the hydrogen ion concentrations for a number of food items. Find the pH of each.

Substance	H ⁺ conc. (mol/L)	pH
Milk	0.0000025	
Tomatoes	0.0000316	
Lemon Juice	0.0063	

Note: $pH = -log[H^+]$