Algebra 2 Honors
Notes: 4.3
Name
Date \qquad Block
I. What is a logarithm?

Reading Math: Read $\log _{b} a=x$, as \qquad .

Example 1:

Write each exponential equation in logarithmic form.

Exponential Equation	Logarithmic Form
$3^{5}=243$	
$25^{1 / 2}=5$	
$10^{4}=10,000$	
$6^{-1}=\frac{1}{6}$	
$a^{b}=c$	
$9^{2}=81$	
$3^{3}=27$	
$x^{0}=1(x \neq 0)$	

II. Special Properties of Logarithms

For any base b, such that $b>0$ and $b \neq 1$.

Logarithmic Form	Exponential Form	Example
Logarithm of Base \boldsymbol{b}		
Logarithm of $\mathbf{1}$		

Note: A logarithm with a base 10 is called a \qquad . If no base is written for a logarithm, the base is assumed to be 10 .

III.Evaluating Logarithms Using Mental Math

Example 3:

Evaluate by using mental math.
a) $\log 0.01=$
b) $\log _{5} 125=$
c) $\log _{5} \frac{1}{5}=$
d) $\log 0.00001=$
e) $\log _{25} 0.04=$
f) $\log _{125} 5=$

IV. Logarithmic Function

Because logarithms are the inverses of exponents, the inverse of an exponential function, such as $y=2^{x}$, is a logarithmic function, such as $y=\log _{2} x$.

$$
f(x)=\log _{b} x
$$

Domain:

Range:
Vertical Asymptote:

Example 4A: Graphing Logarithmic Functions

Use the given x - values $\{-2,-1,0,1,2\}$ to graph $f(x)=1.25^{x}$. Then graph its inverse. State the domain and range of the inverse function.

x	-2	-1	0	1	2
$f(x)=1.25^{x}$					

x					
$f^{-1}(x)=\log _{1.25} x$					

Example 4B: Graphing Logarithmic Functions

Use the given x - values $\{-2,-1,0,1,2\}$ to graph $f(x)=\left(\frac{1}{2}\right)^{x}$. Then graph its inverse. State the domain and range of the inverse function.

x	-2	-1	0	1	2
$f(x)=\left(\frac{1}{2}\right)^{x}$					

x					
$f^{-1}(x)=\log _{1 / 2} x$					

Example 5: Food Application

The table lists the hydrogen ion concentrations for a number of food items. Find the pH of each.

Substance	\mathbf{H}^{+}conc. (mol/L)	pH
Milk	0.00000025	
Tomatoes	0.0000316	
Lemon Juice	0.0063	

Note: $\mathbf{p H}=-\log \left[\mathbf{H}^{+}\right]$

