4-3 Logarithmic Functions

You can write an exponential equation as a logarithmic equation and vice versa.

Reading Math

Read $\log _{b} a=x$, as "the log base b of a is x." Notice that the log is the exponent.

4-3 Logarithmic Functions

Example 1: Converting from Exponential to Logarithmic Form

Write each exponential equation in logarithmic form.

Exponential Equation	Logarithmic Form
$3^{5}=243$	$\log _{3} 243=5$
$25^{\frac{1}{2}}=5$	$\log _{25} 5=\frac{1}{2}$
$10^{4}=10,000$	$\log _{10} 10000=4$
$6^{-1}=\frac{1}{6}$	$\log _{6} \frac{1}{6}=-1$
$a^{b}=c$	$\log _{a} C=b$

4-3 Logarithmic Functions

Check It Out! Example 1

Write each exponential equation in logarithmic form.

Exponential Equation	Logarithmic Form	
a.	$9^{2}=81$	$\log _{9} 81=2$
b.	$3^{3}=27$	$\log _{3} 27=3$
c.	$x^{0}=1(x \neq 0)$	$\log _{x} 1=0$

4-3 Logarithmic Functions

Example 2: Converting from Logarithmic to Exponential Form
Write each logarithmic equation in exponential form.

Logarithmic Form	Exponential Equation
$\log _{9} 9=1$	$9^{\prime}=9$
$\log _{2} 512=9$	$2^{9}=512$
$\log _{8} 2=\frac{1}{3}$	$8^{1 / 3}=2$
$\log _{4} \frac{1}{16}=-2$	$4^{-2}=\frac{1}{16}$
$\log _{b} 1=0$	$b^{0}=1$

4-3 Logarithmic Functions

Check It Out! Example 2

Write each logarithmic equation in exponential

 form.| Logarithmic
 Form | Exponential
 Equation |
| :---: | :---: |
| $\log _{10} 10=1$ | $10^{\prime}=10$ |
| $\log _{12} 144=2$ | $12^{2}=1414$ |
| $\log _{\frac{1}{2}} 8=-3$ | $1 / 2^{3}=8$ |

4-3 Logarithmic Functions

A logarithm is an exponent, so the rules for exponents also apply to logarithms. You may have noticed the following properties in the last example.

Special Properties of Logarithms
For any base b such that $b>0$ and $b \neq 1$,

LOGARITHMIC FORM	EXPONENTIAL FORM	EXAMPLE
Logarithm of Base b		
$\log _{b} b=1$	$b^{1}=b$	$\log _{10} 10=1$ $10^{1}=10$
Logarithm of 1		
$\log _{b} 1=0$	$b^{0}=1$	$\log _{10} 1=0$
$10^{0}=1$		

4-3 Logarithmic Functions

A logarithm with base 10 is called a common logarithm. If no base is written for a logarithm, the base is assumed to be 10. For example, log $5=\log _{10} 5$.

You can use mental math to evaluate some logarithms.

4-3 Logarithmic Functions
Example 3A: Evaluating Logarithms by Using Mental Math Evaluate by using mental math. No (alculators!

$$
\begin{aligned}
& \left.\log _{10} 0.01=\log _{10} \frac{1}{100}=-2 \quad b\right) 10^{-2}=\frac{1}{100} \\
& \log _{5} 125=3 \quad 125^{(113)}=5 \\
& \log _{5} \frac{1}{5}=-1 \\
& \log 5=1 / 3 \\
& \log 0.00001=-5 \quad \log \frac{1}{100,1000} \\
& \log _{25} 0.04=-1 \quad \log _{25} \frac{41}{100^{4}}=\log _{25} \frac{1}{25}=-1
\end{aligned}
$$

4-3 Logarithmic Functions

Because logarithms are the inverses of exponents, the inverse of an exponential function, such as $y=2^{\mathrm{x}}$, is a logarithmic function, such as $y=\log _{2} x$.

You may notice that the domain and range of each function are switched.

The domain of $\mathrm{y}=2^{\mathrm{x}}$ is all real numbers (R), and the range is $\{y \mid y>0\}$. The domain of $y=$ $\log _{2} x$ is $\{x \mid x>0\}$, and the range is all real numbers (R).

4-3 Logarithmic Functions
Example 4A: Graphing Logarithmic Functions
Use the x-values $\{-2,-1,0,1,2\}$. Graph the function and its inverse. Describe the domain and range of the inverse function.

$$
\begin{aligned}
& f(x)=\underline{a} b^{x} \\
& \mathbf{f}(\mathbf{x})=(\mathbf{1 . 2 5}) \longrightarrow H A . y=0
\end{aligned}
$$

x	-2	-1	0	1	2
$f(x)$	0.64	0.8	1	1.25	1.5625

$$
\begin{array}{c|c|c|c|c|c}
x & 0.64 & 0.8 & 1 & 1.25 & 1.5625 \\
\hline f-(x) & -2 & -1 & 0 & 1 & 2
\end{array}
$$

4-3 Logarithmic Functions

Example 4A Continued

To graph the inverse, $f^{-1}(x)=\log _{1.25} x$, by using a table of values.

\boldsymbol{x}	0.64	0.8	1	1.25	1.5625
$\boldsymbol{f}^{-1}(x)=\log _{1.25} x$	-2	-1	0	1	2

The domain of $f^{-1}(x)$ is $\{x \mid x>0\}$, and the range is R.

4-3 Logarithmic Functions

Example 4B: Graphing Logarithmic Functions Use the x-values $\{-2,-1,0,1,2\}$. Graph the function and its inverse. Describe the domain and range of the inverse function.

$$
f(x)=\left[\frac{1}{2}\right]^{x}
$$

Graph $f(x)=\frac{1}{2}^{x}$ by using a table of values.

x	-2	-1	0	1	2
$f(x)=\left(\frac{1}{2}\right)^{x}$	4	2	1	$\frac{1}{2}$	$\frac{1}{4}$

4-3 Logarithmic Functions

Example 4B Continued

To graph the inverse, $\mathrm{f}^{-1}(\mathrm{x})=$ $\log _{\frac{1}{2}} x$, by using a table of values.

x	4	2	1	$\frac{1}{2}$	$\frac{1}{4}$	$D:(0, \infty)$
$f^{-1}(x)=\log _{1 / 2} x$	-2	-1	0	1	2	$k:(8, \infty)$

The domain of $f^{-1}(x)$ is $\{x \mid x>0\}$, and the range is R .

4-3 Logarithmic Functions

Helpful Hint

The LoG key is used to evaluate logarithms in base 10. 2nd ${ }^{10{ }^{x}}$ Log is used to find 10^{x}, the inverse of log.

4-3 Logarithmic Functions

Example 5: Food Application
The table lists the hydrogen ion concentrations for a number of food items. Find the pH of each.

Substance	H^{+}conc. $(\mathrm{mol} / \mathrm{L})$
Milk	0.00000025
Tomatoes	0.0000316
Lemon juice	0.0063

4-3 Logarithmic Functions

Example 5 Continued

Milk

The hydrogen ion concentration is 0.00000025 moles per liter.
$\mathbf{p H}=-\log \left[\mathrm{H}^{+}\right]$
$\mathrm{pH}=-\log (0.00000025)$ Substitute the known values in the function.
 value of the logarithm in base 10. Press the key.
6.602059991

Milk has the pH of about 6.6.

4-3 Logarithmic Functions

Example 5 Continued

Tomatoes

The hydrogen ion concentration is 0.0000316 moles per liter.
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
$\mathrm{pH}=-\log (0.0000316)$
Substitute the known values in the function.

Use a calculator to find the - 1090.0 . 6 value of the logarithm in
4.56012917 base 10. Press the key.

Tomatoes have the pH of about 4.5.

4-3 Logarithmic Functions

Example 5 Continued

Lemon juice

The hydrogen ion concentration is 0.0063 moles per liter.
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$ $\mathrm{pH}=-\log (0.0063)$

Substitute the known values in the function.

Use a calculator to find the -109 (0. 0.6
value of the logarithm in
2.26659451 base 10. Press the key.

Lemon juice has the pH of about 2.2.

