

You can write an exponential equation as a logarithmic equation and vice versa.

Reading Math

Read $\log_b a = x$, as "the log base *b* of *a* is *x*." Notice that the log is the exponent.

Holt McDougal Algebra 2

Example 1: Converting from Exponential to Logarithmic Form

Write each exponential equation in logarithmic form.

Exponential Equation	Logarithmic Form
$3^5 = 243$	1093243=5
$25^{\frac{1}{2}} = 5$	$10925^{5} = \frac{1}{2}$
$10^4 = 10,000$	$109_{10}10000 = 4$
$6^{-1} = \frac{1}{6}$	$109_{6} = -1$
$a^b = c$	10gaC= b

Holt McDougal Algebra 2

Check It Out! Example 1

Write each exponential equation in logarithmic form.

	Exponential Equation	Logarithmic Form
a.	<mark>9</mark> ² = 81	$109_{9}81 = 2$
b.	3 ³ = 27	$109_{3}27=3$
C.	$x^0 = 1(x \neq 0)$	$ 0g_{\chi} = 0$

Holt McDougal Algebra 2

Example 2: Converting from Logarithmic to Exponential Form

Write each logarithmic equation in exponential form.

Logarithmic Form	Exponential Equation
log ₉ 9 = 1	9'=9
$\log_2 512 = 9$	2 ⁹ =512
$\log_8 2 = \frac{1}{3}$	8 ¹¹³ =2
$\log_4 \frac{1}{16} = -2$	4-2=1
$\log_b 1 = 0$	Po=1

Copyright © by Holt Mc Dougal. All Rights Reserved.

Holt McDougal Algebra 2

Check It Out! Example 2

Write each logarithmic equation in exponential form.

Logarithmic Form	Exponential Equation
log ₁₀ 10 = 1	10, = 10
$\log_{12}144 = 2$	122=144
$\log_{\frac{1}{2}}8 = -3$	1/2 8

A logarithm is an exponent, so the rules for exponents also apply to logarithms. You may have noticed the following properties in the last example.

Special Properties of Logarithms		
For any base <i>b</i> such that $b > 0$ and $b \neq 1$,		
LOGARITHMIC FORM EXPONENTIAL FORM EXAMPLE		
Logarithm of Base b		
$\log_b b = 1$	$b^1 = b$	log ₁₀ 10 = 1 10 ¹ = 10
Logarithm of 1		
$\log_b 1 = 0$	$b^{0} = 1$	$log_{10}1 = 0$ $10^0 = 1$

A logarithm with base 10 is called a <u>common</u> <u>logarithm</u>. If no base is written for a logarithm, the base is assumed to be 10. For example, log $5 = \log_{10}5$.

You can use mental math to evaluate some logarithms.

Example 3A: Evaluating Logarithms by Using Mental Math

Evaluate by using mental math. No Colculators!

 $\log_{10} 0.01 = 109_{10} \frac{1}{100} = -2$ by $\log_{5} 125 = 3$ 109,25 = 1/3 $\log_5 \frac{1}{5} < -$ 109 100,000 log 0.00001 - 5 $109_{25100} = 109_{2525} = -1$ log₂₅0.04 ^{~ - |}

Holt McDougal Algebra 2

Because logarithms are the inverses of exponents, the inverse of an exponential function, such as $y = 2^x$, is a **logarithmic function**, such as $y = \log_2 x$.

You may notice that the domain and range of each function are switched.

The domain of $y = 2^x$ is all real numbers (R), and the range is $\{y|y > 0\}$. The domain of $y = \log_2 x$ is $\{x|x > 0\}$, and the range is all real numbers (R).

Example 4A: Graphing Logarithmic Functions Use the x-values $\{-2, -1, 0, 1, 2\}$. Graph the function and its inverse. Describe the domain $D^{(0, \sim \neq)}$ and range of the inverse function. R: (-00,00) $f(x) = a b^{x}$ $f(x) = (1.25^{x}) - 7 HA. \gamma = 0$ X -2 -1 0 12 f(x) 0.64 0.8 1 1.25 1.5625 X 0.64 0.8 1 1.25 1.5625 VA f-1(x) - 2 - 1 0 1 1 2 X.0

Example 4A Continued

To graph the inverse, $f^{-1}(x) = \log_{1.25} x$, by using a table of values.

The domain of $f^{-1}(x)$ is $\{x | x > 0\}$, and the range is R.

Holt McDougal Algebra 2

Example 4B: Graphing Logarithmic Functions

Use the *x*-values {-2, -1, 0, 1, 2}. Graph the function and its inverse. Describe the domain and range of the inverse function.

$$f(x) = \left[\frac{1}{2}\right]^x$$

Graph $f(x) = \frac{1}{2}^{x}$ by using a table of values.

X	-2	—1	0	1	2
$f(\mathbf{x}) = \left(\frac{1}{2}\right)^{x}$	4	2	1	<u>1</u> 2	<u>1</u> 4

-Þ

Π

х

The domain of $f^{-1}(x)$ is $\{x | x > 0\}$, and the range is R.

Holt McDougal Algebra 2

Example 5: Food Application

The table lists the hydrogen ion concentrations for a number of food items. Find the pH of each.

Substance	H ⁺ conc. (mol/L)
Milk	0.0000025
Tomatoes	0.0000316
Lemon juice	0.0063

Holt McDougal Algebra 2

Example 5 Continued

Milk

The hydrogen ion concentration is 0.0000025 moles per liter.

 $pH = -log[H^+]$

pH = -log(0.0000025)

Substitute the known values in the function.

Use a calculator to find the -log(0.00000025) value of the logarithm in base 10. Press the Image key. 6.602059991

Milk has the pH of about 6.6.

Example 5 Continued

Tomatoes

The hydrogen ion concentration is 0.0000316 moles per liter.

- $pH = -log[H^+]$
- pH = -log(0.0000316)

Substitute the known values in the function.

Use a calculator to find the -log(0.0000316) value of the logarithm in 4.500312917 base 10. Press the Image key.

Tomatoes have the pH of about 4.5.

Holt McDougal Algebra 2

Example 5 Continued

Lemon juice

The hydrogen ion concentration is 0.0063 moles per liter.

- $pH = -log[H^+]$
- pH = -log(0.0063)

Substitute the known values in the function.

Use a calculator to find the -log(0.0063) value of the logarithm in 2.200659451 base 10. Press the E key.

Lemon juice has the pH of about 2.2.