\qquad Block \qquad

I. Exponential Function

$$
f(x)=b^{x}, \text { where } b>0, b \neq 1
$$

Domain:
Range:

Horizontal Asymptote:

Exponential Growth:

Exponential Decay:

II. Graphing Exponential Functions

Key Points:

Example 1A: Tell whether the function shows growth or decay. Then graph. Show your table of values. $\quad f(x)=10\left(\frac{3}{4}\right)^{x}$

Example 1B: Tell whether the function shows growth or decay. Then graph. Show your table of values.
$f(x)=100(1.05)^{x}$

Check it out! Example 1: Tell whether the function shows growth or decay. Then graph. Show your table of values.

$$
f(x)=5(1.2)^{x}
$$

III.Modeling Exponential Growth and Decay

$$
A(t)=a(1 \pm r)^{t}
$$

Example 2: Clara invests $\$ 5000$ in an account that pays 6.25% interest per year. After how many years will her investment be worth $\$ 10,000$?

Check it out! Example 2: In 1981, the Australian humpback whale population was 350 and increased at a rate of 14% each year since then. Write a function to model population growth. Use a graph to predict when the population will reach 20,000.

Example 3: A city population, which was initially 15,500 , has been dropping 3% a year. Write an exponential function and graph the function. Use the graph to predict when the population will drop below 8000 .

