

Make a table of values and use it to graph the following functions on the same coordinate plane. Use the same x-values for each function

Describe how the graphs of the last three functions differ from the graph of $f(x) = x^2$.

Holt McDougal Algebra 2

Copyright © by Holt Mc Dougal. All Rights Reserved.

Using Transformations to Graph Quadratic Functions

While you can graph quadratic functions by making a table of values, you can also graph quadratic functions by applying transformations to the parent function $f(x) = x^2$.

Holt McDougal Algebra 2

Example 1: Translating Quadratic Functions

Use the graph of $f(x) = x^2$ as a guide, describe the transformations of each function.

$$g(x) = (x - 2)^{2} + 4$$
Shifts right 2
$$Shifts \cup P \subseteq A$$

Holt McDougal Algebra 2

Copyright © by Holt Mc Dougal. All Rights Reserved.

Using Transformations to Graph Quadratic Functions

Example 2: Translating Quadratic Functions

Use the graph of $f(x) = x^2$ as a guide, describe the transformations of each function.

$$(x-(-2))^{2}$$
 $h=-2$ $k=-3$ $g(x) = (x + 2)^{2} - 3$ $|ef+ 2|$

Holt McDougal Algebra 2

2-1

Using Transformations to Graph Quadratic Functions

Check It Out! Example 3

Using the graph of $f(x) = x^2$ as a guide, describe the transformations of each function.

$$g(x) = x^2 - 5$$
Shifts down 5

Holt McDougal Algebra 2

Copyright © by Holt Mc Dougal. All Rights Reserved.

2-1

Using Transformations to Graph Quadratic Functions

Holt McDougal Algebra 2

Holt McDougal Algebra 2

Copyright © by Holt Mc Dougal, All Rights Reserved.

Using Transformations to Graph Quadratic Functions

Example 4: Reflecting, Stretching, and Compressing

Quadratic Functions

Using the graph of $f(x) = x^2$ as a guide, describe the transformations and then graph each function.

Holt McDougal Algebra 2

Example 5: Reflecting, Stretching, and Compressing Quadratic Functions

Using the graph of $f(x) = x^2$ as a guide, describe the transformations and then graph each function.

$$g(x) = (3x)^2$$

Holt McDougal Algebra 2

Copyright © by Holt Mc Dougal. All Rights Reserved.

2-1

Using Transformations to Graph Quadratic Functions

Check It Out! Example 6

Using the graph of $f(x) = x^2$ as a guide, describe the transformations and then graph each function.

$$g(x) = (2x)^2$$

Holt McDougal Algebra 2

Check It Out! Example 7

Using the graph of $f(x) = x^2$ as a guide, describe the transformations and then graph each function.

 $g(x) = -\frac{1}{2}x^{2}$ (eflection) $\chi - \alpha x rs$ (eflection) $\chi - \alpha x rs$

Copyright © by Holt Mc Dougal. All Rights Reserved.

Using Transformations to Graph Quadratic Functions

If a parabola opens upward, it has a lowest point. If a parabola opens downward, it has a highest point. This lowest or highest point is the **vertex** of the parabola.

The parent function $f(x) = x^2$ has its vertex at the origin. You can identify the vertex of other quadratic functions by analyzing the function in vertex form. The vertex form of a quadratic function is $f(x) = a(x - h)^2 + k$, where a, h, and k are constants.

Holt McDougal Algebra 2

Vertex Form of a Quadratic Function

$$f(x) = a(x-h)^2 + k$$
a indicates a reflection across the x-axis and/or a vertical stretch or a vertical stretch or a vertical translation.

Because the vertex is translated h horizontal units and k vertical from the origin, the vertex of the parabola is at (h, k).

Holt McDougal Algebra 2

compression.

Copyright © by Holt Mc Dougal, All Rights Reserved.

2-1 Using Transformations to Graph Quadratic Functions

Example 8: Writing Transformed Quadratic Functions

Use the description to write the quadratic function in vertex form.

The parent function $f(x) = x^2$ is vertically stretched by a factor of $\frac{4}{3}$ and then translated 2 units left and 5 units down to create g.

Holt McDougal Algebra 2

Check It Out! Example 9

Use the description to write the quadratic function in vertex form.

The parent function $f(x) = x^2$ is vertically compressed by a factor of $\frac{2}{3}$ and then translated 2 units right and 4 units down to create g.

Holt McDougal Algebra 2

Copyright © by Holt Mc Dougal, All Rights Reserved.

2-1 Using Transformations to Graph Quadratic Functions

Check It Out! Example 10

Use the description to write the quadratic function in vertex form.

The parent function $f(x) = x^2$ is reflected across the x-axis and translated 5 units left and 1 unit up to create g.

Holt McDougal Algebra 2