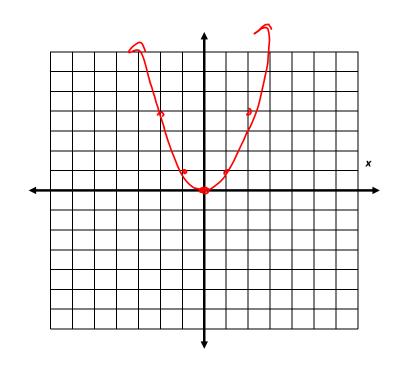
3.7 INVESTIGATING GRAPHS OF POLYNOMIAL FUNCTIONS

3.8 TRANSFORMING POLYNOMIAL FUNCTIONS

- Polynomial functions are classified by their degree.
- The graphs of polynomial functions are classified by the degree of the polynomial.
- Each graph, based on the degree, has a distinctive shape and characteristics.
- End behavior is a description of the values of the function as x approaches infinity $(x \rightarrow +\infty)$ or negative infinity $(x \rightarrow -\infty)$. It is helpful when you are graphing a polynomial function to know about the end behavior of the function.

 Let's think about what we already know about some basic polynomial functions.

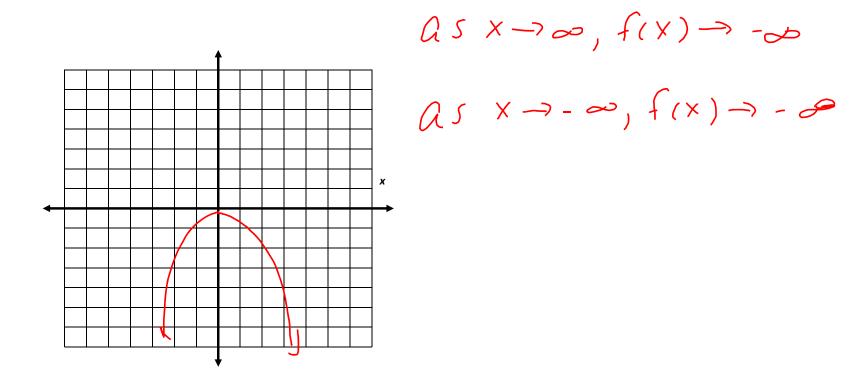
Sketch the graph of $f(x) = x^2$ and describe its end behavior.



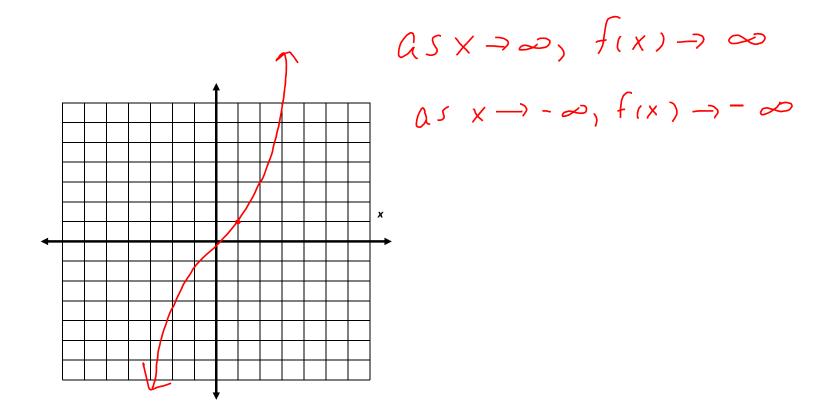
$$as x \rightarrow \infty, f(x) \rightarrow \infty$$

 $as x \rightarrow -\infty, f(x) \rightarrow \infty$

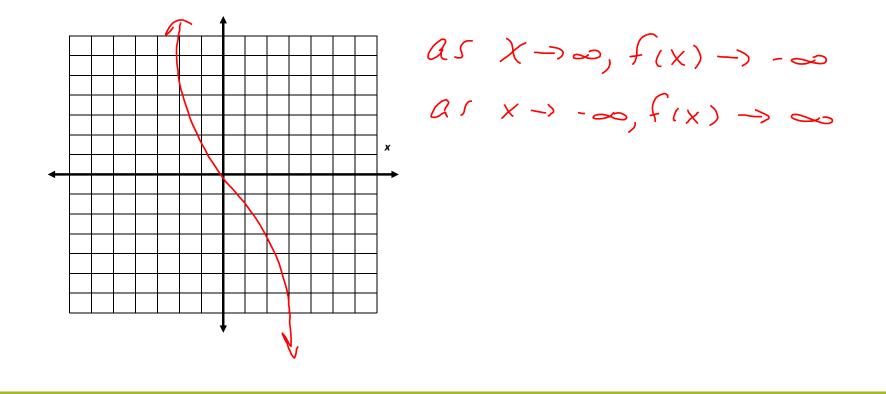
Sketch the graph of $f(x) = -x^2$ and describe its end behavior.



Sketch the graph of $f(x) = x^3$ and describe its end behavior.



Sketch the graph of $f(x) = -x^3$ and describe its end behavior.

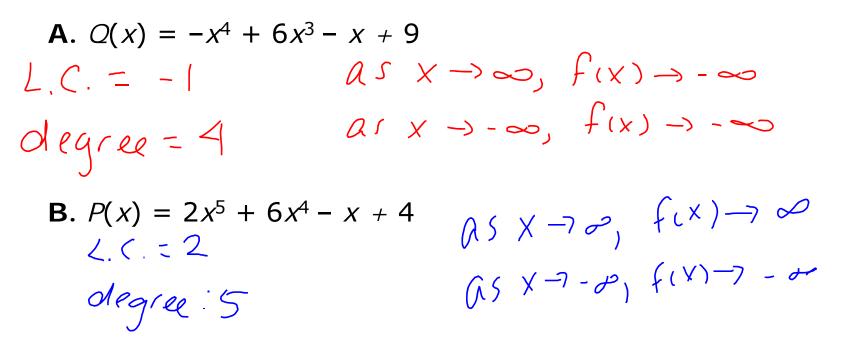


Now explore the graphs of some other polynomial functions on your own, and make a conjecture about the characteristics of the function that seem to affect its end behavior. Write your thoughts/conjecture here, and then we'll summarize our findings together.

Function	End Behavior	
even degree positive leading over degree	as x-2000 f(x)-200 t	$as X \rightarrow -\infty, \\f(x) \rightarrow \infty$
even degree hegative leading (Deff. odd degree	as x->~, fix)->-~	GS × ~) f(x) ~
odd degree Positive leading coef.	as x-200, fix)-200	QS X-7-0, F(X)-7-00
Odd degree hegative leading roef.	QS X-フクリ f(X)-フーク	(い X-7- ~) Fux)-7 ~

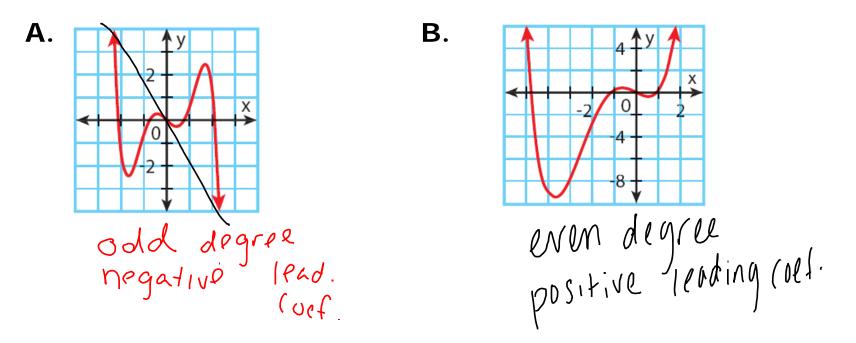
Example 1: Determining End Behavior of Polynomial Functions

Identify the leading coefficient, degree, and end behavior.



Example 2: Using Graphs to Analyze Polynomial Functions

Identify whether the function graphed has an odd or even degree and a positive or negative leading coefficient.



Now that you have studied factoring, solving polynomial equations, and end behavior, you can graph a polynomial function.

Steps for Graphing a Polynomial Function

- 1. Find the real zeros and y-intercept of the function.
- 2. Plot the *x* and *y*-intercepts.
- 3. Make a table for several *x*-values that lie between the real zeros.
- 4. Plot the points from your table.
- 5. Determine the end behavior of the graph.
- 6. Sketch the graph.

Example 3: Graphing Polynomial Functions Graph the function. $f(x) = x^3 + 4x^2 + x - 6$. possible rational zeros provisiv ±1, ±2, ±3, ±6 puterni $\frac{156}{1560}$ $\frac{1560}{1560}$ $\frac{\chi^{2}+5\chi+6=0}{(\chi+3\chi+7)=0}$ y-10+. (0,-6)

Check It Out! Example 3a

Graph the function. $f(x) = -x^3 + 2x^2 + 5x - 6$.

