A <u>turning point</u> is where a graph changes from increasing to decreasing or from decreasing to increasing. A turning point corresponds to a *local maximum* or *minimum*.

Local Maxima and Minima

For a function f(x), f(a) is a **local maximum** if there is an interval around a such that f(x) < f(a) for every x-value in the interval except a.

For a function f(x), f(a) is a **local minimum** if there is an interval around *a* such that f(x) > f(a) for every *x*-value in the interval except *a*.

A polynomial function of degree n has at most n - 1 turning points and at most n x-intercepts.

You can use a graphing calculator to graph and estimate maximum and minimum values.

Example 4: Determine Maxima and Minima with a Calculator

A. Graph $f(x) = 2x^3 - 18x + 1$ on a calculator, and estimate the local maxima and minima. 0(al maximum 21.78) (0(curs x=-1.73)) 0(al minimum - 19.78) (0(curs x=-1.73)) 0(al minimum - 19.78) (0(curs x=-1.73))

B. Graph $g(x) = x^3 - 2x - 3$ on a calculator, and estimate the local maxima and minima.

You can perform the same transformations on polynomial functions that you performed on quadratic and linear functions.

Transformations of <i>f</i> (<i>x</i>)			
Transformation	f(x) Notation	Examples	
Vertical translation	f(x)	$g(x) = x^3 + 3$	3 units up
	$\Gamma(x) + \kappa$	$g(x) = x^3 - 4$	4 units down
Horizontal translation	f(x b)	$g(x) = (x-2)^3$	2 units right
	n(x - n)	$g(x) = (x+1)^3$	1 unit left
Vertical stretch/	af(x)	$g(x) = 6x^3$	stretch by 6
compression	ar(x)	$g(x) = \frac{1}{2}x^3$	compression by $\frac{1}{2}$
Horizontal stretch/	(1)	$g(x) = \left(\frac{1}{r}x\right)^3$	stretch by 5
compression	$f\left(\frac{1}{b}x\right)$	$g(x) = (3x)^3$	compression by $\frac{1}{3}$
Reflection	-f(x)	$g(x) = -x^3$	across <i>x</i> -axis
	f(-x)	$g(x) = (-x)^3$	across <i>y</i> -axis

Example 5: Translating a Polynomial Function

For $f(x) = x^3 - 6$, write the rule for each function and identify the transformation.

A.
$$g(x) = f(x) - 2$$
 $g(x) = x^{3} - 8$ Vertical shift down 2
 $g(x) = (x^{3} - 6) - 2$

B.
$$h(x) = f(x + 3)$$

 $h(x) = (x + 3)^{3} - 6$

horizontal shift left 3

Example 6: Reflecting a Polynomial Function

For $f(x) = x^3 + 5x^2 - 8x + 1$, write the rule for each function and identify the transformation.

A.
$$h(x) = -f(x)$$
 (effection in X-axis
 $h(x) = -(x^3 + 5x^{2} - 8x + 1)$ $h(x) = -x^{3} - 5x^{2} + 8x - 1$
 $g(x) = f(-x)$ (effection in Y-axis
 $g(x) = (-x)^{3} + 5(-x)^{2} - 8(-x) + 1$ $g(x) = -x^{3} + 5x^{2} + 8x + 1$
 $g(x) = -x^{3} + 5x^{2} + 1$