A turning point is where a graph changes from increasing to decreasing or from decreasing to increasing. A turning point corresponds to a local maximum or minimum.

Local Maxima and Minima

For a function $f(x), f(a)$ is a local maximum if there is an interval around a such that $f(x)<f(a)$ for every x-value in the interval except a.
For a function $f(x), f(a)$ is a local minimum if there is an interval around a such that $f(x)>f(a)$ for every x-value in the interval except a.

A polynomial function of degree n has at most $\mathrm{n}-1$ turning points and at most $n \mathrm{x}$-intercepts.
You can use a graphing calculator to graph and estimate maximum and minimum values.

Example 4: Determine Maxima and Minima with a Calculator
A. Graph $f(x)=2 x^{3}-18 x+1$ on a calculator, and

$$
\begin{aligned}
& \text { estimate the local maxima and minima. } \\
& \text { local maximum } 21.78 \quad\left(\begin{array}{c}
\text { ocuren } \\
\text { when }
\end{array} x=-1.73\right) \\
& \text { local minimum - } 19.78 \quad \text { (occulismy }=1.73 \text {) }
\end{aligned}
$$

B. Graph $g(x)=x^{3}-2 x-3$ on a calculator, and estimate the local maxima and minima.

You can perform the same transformations on polynomial functions that you performed on quadratic and linear functions.

Transformations of $\boldsymbol{f}(\boldsymbol{x})$			
Transformation	$f(x)$ Notation	Examples	
Vertical translation	$f(x)+k$	$\begin{aligned} & g(x)=x^{3}+3 \\ & g(x)=x^{3}-4 \end{aligned}$	3 units up 4 units down
Horizontal translation	$f(x-h)$	$\begin{aligned} & g(x)=(x-2)^{3} \\ & g(x)=(x+1)^{3} \end{aligned}$	2 units right 1 unit left
Vertical stretch/ compression	$a f(x)$	$\begin{aligned} & g(x)=6 x^{3} \\ & g(x)=\frac{1}{2} x^{3} \end{aligned}$	stretch by 6 compression by $\frac{1}{2}$
Horizontal stretch/ compression	$f\left(\frac{1}{b} x\right)$	$\begin{aligned} & g(x)=\left(\frac{1}{5} x\right)^{3} \\ & g(x)=(3 x)^{3} \end{aligned}$	stretch by 5 compression by $\frac{1}{3}$
Reflection	$\begin{aligned} & -f(x) \\ & f(-x) \end{aligned}$	$\begin{aligned} & g(x)=-x^{3} \\ & g(x)=(-x)^{3} \end{aligned}$	across x-axis across y-axis

Example 5: Translating a Polynomial Function
For $f(x)=x^{3}-6$, write the rule for each function and identify the transformation.
A. $g(x)=f(x)-2 \quad g(x)=x^{3}-8$ vertical shift down 2 $g(x)=\left(x^{3}-6\right)-2$
B. $h(x)=f(x+3)$
horizontal shift

$$
h(x)=(x+3)^{3}-6
$$

Example 6: Reflecting a Polynomial Function
For $f(x)=x^{3}+5 x^{2}-8 x+1$, write the rule for each function and identify the transformation.
A. $h(x)=-f(x)$
reflection in x-axis $h(x)=-\left(x^{3}+5 x^{2}-8 x+1\right)$

$$
h(x)=-x^{3}-5 x^{2}+8 x-1
$$

B.

$$
\begin{aligned}
& g(x)=f-x \\
& g(x)=(-x)^{3}+5(-x)^{2}-8(-x)+1 \quad \text { reflection in } y(x)=-x^{3}+5 x^{2}+8 x+15 \\
& g(x)=-x^{3}+5 x^{2}+
\end{aligned}
$$

