Warm Up

$$
(a-b)(a+b)=a^{2}-b^{2}
$$

Simplify completely.
1.

2. $(3-\sqrt{2})(3+\sqrt{2})$

$$
9-2
$$

3. $(8+3 i)(8-3 i)$

$$
64+9
$$

3-5 Finding Real Roots of Polynomial Equations and 3-6 Fundamental Theorem of Algelbra

Formulas

$$
\text { Cone } V=\frac{1}{3} \pi r^{2} h
$$

$\begin{gathered}\text { Rectangular } \\ \text { Prism }\end{gathered} V=$ huh \quad Sphere $V=\frac{4}{3} \pi r^{3}$
Right Triangle $V=\frac{1}{3}$ pah hemisphere Pyramid $V=\frac{3}{3}$ lon $V=\frac{2}{3} \pi r^{3}$

Cylinder $V=\pi r^{2} h$

Applications
\#1
The design of a box specifies that its length is 4 inches greater than its width. The height is 1 inch less than the width. The volume of the box is $\mathbf{1 2}$ cubic inches. What is the width of the box?

$$
V=12 \mathrm{in}^{3}
$$

$V=\ln h$

$$
\begin{aligned}
& w(w+4)(w-1)=12 \\
& w\left(w^{2}+3 w-4\right)=12 \\
& w^{3}+3 w^{2}-4 w-12=0 \\
& w^{2}(w+3)-4(w+3)=0
\end{aligned}
$$

Applications
\#2
A shipping crate must hold 15 cubic feet. The length should be 2 feet longer than the height, and the width should be 2 feet less than the height. What should the
height of the crate be?

3 feet

$$
\begin{aligned}
& h(h-2)(h+2)=15 \\
& h\left(h^{2}-4\right)=15 \\
& h^{3}-4 h-15=0
\end{aligned}
$$

$$
\text { 3) } \begin{array}{ccc|c}
1 & 0 & -4 & -15 \\
3 & 9 & 15 \\
\hline 13 & 5 & 0
\end{array}
$$

$$
h^{2}+3 h+5=0
$$

$$
b^{2}, 4 a c
$$

$$
\begin{aligned}
& b^{2}, 4 a c \\
& a-4(1)(h) \neq 0
\end{aligned}
$$

Applications
\#3
A silo is in the shape of a cylinder with a coneshaped top. The cylinder is 20 feet tall. The height of the cone is 1.5 times the radius. The volume of the silo is 828π cubic feet. Find the radius of the silo.

$$
\begin{aligned}
& \quad V_{\text {SILO }}=828 \pi f t^{3} \\
& V_{\text {çindu }}+V_{\text {conc }} \\
& V_{\text {SILO }}=\pi r^{2} h+\frac{1}{3} \pi r^{2} h \\
& 828 \pi=\pi r^{2}(20)+\frac{1}{3} \pi r^{2}(1.5 r) \\
& 828=20 r^{2}+\frac{1}{2} r^{3} \\
& \frac{1}{2} r^{3}+20 r^{2}-828=0
\end{aligned}
$$

43
cont
$r=6$ feet

$$
\begin{aligned}
& \text { [6] } \begin{array}{rccc}
1 / 2 & \frac{20}{3} & 0 & -828 \\
138 & 828 \\
\hline 1 / 2 & 23 & 138 & 0
\end{array} \\
& \frac{1}{2} x^{2}+23 x+138=0 \longleftarrow \text { Solutions }{ }^{\text {are }} \text {.ide }
\end{aligned}
$$

Applications
\#4
A grain silo is in the shape of a cylinder with a hemisphere top. The cylinder is 20 feet tall. The volume of the silo is 2106π cubic feet. Find the radius of the silo.

$$
\begin{gathered}
V_{S I L O}=V_{C V I N D E R}+V_{\text {HEMISPHERE }} \\
2106 \pi=20 \pi r^{2}+\frac{2}{3} \pi r^{3} \\
\frac{2}{3} r^{3}+20 r^{2}-2106=0 \\
9 \sqrt{\frac{2}{3}} 20 \quad 0 \quad-2106 \\
\frac{6}{2 / 3} \\
\hline 26 \\
234 \\
\hline 2106 \\
\hline
\end{gathered}
$$

$$
\frac{2}{3} r^{2}+26 r+234=0
$$

$(a+b)(a-b)=a^{2}-b^{2}$
Writing a Polynomial Function $2-1$
Write the simplest polynomial function with zero $\mathbf{2}+\mathbf{i}$

$$
\begin{aligned}
& f(x)=[x-(2+i)][x-(2-i)] \\
& f(x)=((x-2)-i)((x-2)+i) \\
& f(x)=(x-2)^{2}-i^{2} \\
& f(x)=x^{2}-4 x+4+1 \\
& f(x)=x^{2}-4 x+5
\end{aligned}
$$

Writing a Polynomial Function
Write the simplest polynomial function with zeros $2+i$ and 1 .
(6) $f(x)=x^{3}-5 x^{2}+9 x-5$
(1) $f(x)=x^{5}-5 x^{4}+6 x^{3}+10 x^{2}-27 x+15$
(8) $f(x)=x^{6}-2 x^{5}-2 x^{3}-13 x^{2}+24 x+12$

Writing a Polynomial Function

 Write the simplest polynomial function with zeros $2+i, \sqrt{3}$, and 1 .Write the simplest polynomial function with zeros $\mathbf{2 i}, 1+\sqrt{2}$, and 3 .

