3-5 Finding Real Roots of Polynomial Equations and 3-6 Fundamental Theorem of Algelbra

Fundamental Theorem of Algebra

The Fundamental Theorem of Algebra

Every polynomial function of degree $n \geq 1$ has at least one zero, where a zero may be a complex number.
Corollary: Every polynomial function of degree $n \geq 1$ has exactly n zeros, including multiplicities.

Examples: Solve each polynomial equation by factoring.
1.

$$
\begin{gathered}
\mathbf{x}^{3}-\mathbf{2 x ^ { 2 }}-\mathbf{2 5 x}=\mathbf{- 5 0} \\
x^{3}-2 x^{2}-25 x+50=0 \\
x^{2}(x-2)-25(x-2)=0 \\
\left(x^{2}-25\right)(x-2)=0
\end{gathered}
$$

$$
(x+5)(x-5)(x-2)=0
$$

2. $\mathbf{4} \mathbf{x}^{6}+\mathbf{4} \mathbf{x}^{5}-\mathbf{2 4} \mathrm{x}^{4}=\mathbf{0}$

$$
x=
$$

$0,-3,2$

$$
\begin{array}{ll}
4 x^{4}\left(x^{2}+x-6\right)=0 & 4 x^{4}=0 \\
4 x^{4}(x+3)(x-2)=0 & x^{4}=0 \\
4 x \cdot x \cdot x \cdot x+3)(x-2)=0 \\
3 . \quad \mathbf{x}^{4}+\mathbf{2 5}=\mathbf{2 6 x} & x=0
\end{array}
$$

$$
\begin{aligned}
& x^{4}-26 x^{2}+25=0 \\
& \left(x^{2}-25\right)\left(x^{2}-1\right)=0
\end{aligned}
$$

$$
\begin{gathered}
(x+5)(x-5)(x+1)(x-1)=0 \\
x= \pm 5, \pm 1
\end{gathered}
$$

Sometimes a polynomial equation has a factor that appears more than once. This creates a multiple root.
-The multiplicity of root r is the number of times that $x-r$ is a factor of $P(x)$.
-When a real root has even multiplicity, the graph of $y=P(x)$ touches the x-axis but does not cross it.
-When a real root has odd multiplicity greater than 1 , the graph "bends" as it crosses the x-axis.

You cannot always determine the multiplicity of a root from a graph. It is easiest to determine multiplicity when the polynomial is in factored form.

Examples: Identify the roots of each equation.
State the multiplicity of each root.
4. $x^{3}+6 x^{2}+12 x+8=0$

$$
(x+2)^{3}=0
$$

-21| 1 | 6 | 12 |
| ---: | ---: | ---: |
| | 8 | |
| | -2 | -8 |
| | 4 | 4 |

$x=-2$, multiplicity of

$$
x^{2}+4 x+4=(x+2)(x+2)
$$

5. $\mathbf{x}^{4}+\mathbf{8} \mathbf{x}^{\mathbf{3}}+\mathbf{1 8} \mathbf{x}^{\mathbf{2}}-\mathbf{2 7}=\mathbf{0} \rightarrow(x+3)^{3}(x-1)=0$

Examples: Solve each equation by factoring. State the multiplicity of each root.

$$
x^{2}=5 \quad x= \pm \sqrt{5}
$$

$$
\begin{array}{lll}
\text { 6. } x^{3}+6 x^{2}-5 x-30=\mathbf{0} & x=\sqrt{5}, & \text { multiplicity } \\
x^{2}(x+6)-5(x+6)=0 & x=-\sqrt{5}, \\
\left(x^{2}-5\right)(x+6)=0 & x=6, & \text {,1 } \\
(x+\sqrt{5})(x-\sqrt{5})(x+6)=0 &
\end{array}
$$

7.

$$
\begin{aligned}
& \text { 7. } \mathbf{2} \mathbf{x}^{5}+12 \mathbf{x}^{4}+16 \mathbf{x}^{3}-\mathbf{1 2 x ^ { 2 }} \mathbf{- 1 8 x}=\mathbf{0} \\
& 2 x\left(x^{4}+6 x^{3}+8 x^{2}-6 x-9\right)=0 \\
& 2 x(x+3)^{2}(x+1)(x-1)^{1}=0 \\
& x=0 \quad x=-3 \quad x=1 \quad x=-1
\end{aligned}
$$

Rational Root Theorem

If the polynomial $P(x)$ has integer coefficients, then every rational root of the polynomial equation $P(x)=0$ can be written in the form $\frac{p}{q}$, where p is a factor of the constant term of $P(x)$ and q is a factor of the leading coefficient of $P(x)$.

Irrational Root Theorem

If the polynomial $P(x)$ has rational coefficients and $a+b \sqrt{c}$ is a root of the polynomial equation $P(x)=0$, where a and b are rational and \sqrt{c} is irrational, then $a-b \sqrt{c}$ is also a root of $P(x)=0$.

Complex Conjugate Root Theorem

If $\boldsymbol{a}+\boldsymbol{b} \boldsymbol{i}$ is a root of a polynomial equation with real-number coefficients, then $\boldsymbol{a}-\boldsymbol{b i}$ is also a root.

Let's put it all together. First, here is an overview of the steps for finding ALL roots of a polynomial equation.

Solving Polynomial Equations

1. Use the Rational Root Theorem to identify all possible rational roots.
2. Graph the polynomial equation to find the real roots AND/ OR test the possible rational roots to find at least one that is actually a root.
3. Use the identified root(s) to factor the polynomial completely.
4. Solve and state ALL roots of the original equation.

Examples: Solve each equation by finding all roots.

1. $4 x^{4}-21 x^{3}+18 x^{2}+19 x-6=0$
$\begin{aligned} & \text { (1) List possible: factors of }-6 \\ & \text { rational zeros }\end{aligned} \frac{ \pm 1, \pm 2, \pm 3, \pm 6}{\text { factors of } 4}=\frac{ \pm 1, \pm 2, \pm 4}{ \pm 1, \pm}$
(2) Identify 2 rational $= \pm 1, \pm \frac{1}{2}, \pm \frac{1}{4}, \pm 2, \pm 3, \pm \frac{3}{2}, \pm \frac{3}{4}, \pm 6$ zeros: $-3 / 4,2$
(4) Solve
(3) Divide
$214-21 \quad 18 \quad 19 \quad-6$

-3/4) | | 8 | -26 | -16 | 6 |
| :---: | :---: | :---: | :---: | :---: |
| 4 | -13 | -8 | 3 | 0 |
| | 3 | 12 | -3 | 0 |

$$
\begin{aligned}
& 4 x^{2}-16 x+4=0 \\
& x^{2}-4 x+1=0 \\
& x=\frac{4 \pm \sqrt{(-4)^{2}-4(1)(1)}}{2} \\
& x=1
\end{aligned}
$$

(5) Identify all

$$
\begin{aligned}
& x^{2}-4 x+1=0 \\
& x=\frac{4 \pm \sqrt{(-4)^{2}-4(1)(1)}}{2} \\
& x=\frac{4 \pm \sqrt{12}}{2} \\
& x=\frac{4 \pm 2 \sqrt{3}}{2}=2 \pm \sqrt{3}
\end{aligned}
$$ solutions

$$
x=-3 / 4,2,2 \pm \sqrt{3}
$$

