\qquad
\qquad

Warm Up

1. $25 z^{2}-y^{2}$
2. $\frac{1}{x^{2}}-1$
3. $8 y^{2}-2$
4. $4 r s^{2}-4 r s+r$

Review

Solve the equation using square roots.

1. $x^{2}+4 x+4=36$
2. $x^{2}-6 x+9=1$
3. $x^{2}-22 x+121=81$

Example \#1

Find the value of c that makes $x^{2}+14 x+c$ a perfect square trinomial. Then write the expression as the square of a binomial.
(a) $x^{2}+8 x+c$
(b) $x^{2}-2 x+c$
(c) $x^{2}-9 x+c$

Example \#2

Solve $x^{2}-10 x+7=0$ by completing the square.

Example \#3

Solve $3 x^{2}+12 x+15=0$ by completing the square.

Additional Practice

Solve the equation by completing the square.

(a) $x^{2}-4 x+8=0$
(b) $x^{2}+8 x-5=0$
(c) $-3 x^{2}-18 x-6=0$
(d) $4 x^{2}+32 x=-68$
(e) $6 x(x+2)=-42$
(f) $2 x(x-2)=200$

Example \#4

Write $y=x^{2}-12 x+18$ in vertex form. Then identify the vertex.

Write the quadratic function in vertex form. Then identify the vertex.
(a) $y=x^{2}-8 x+18$
(b) $y=x^{2}+6 x+4$
(c) $y=x^{2}-2 x-6$

Example \#5

The height y (in feet) of a baseball t seconds after it is hit can be modeled by the function $y=-16 t^{2}+96 t+3$. Find the maximum height of the baseball. How long does the ball take to hit the ground?

WHAT IF? The height of the baseball can be modeled by $y=-16 t^{2}+80 t+2$. Find the maximum height of the baseball. How long does the ball take to hit the ground?

