Algebra 2 Notes: 3.2	Name Date	Block
*Core Concept: The Square Root of a Ne	gative Number	
If <i>r</i> is a positive real number, then		
Example:		
By the first property, it follows that		
Example:		
(1) Find the square root of each number. a. $\sqrt{-25}$	b. √-72	c. −5√−9
d. $\sqrt{-4}$	e. √-12	
f. $-\sqrt{-36}$	g. $2\sqrt{-54}$	

(2) Find the values of *x* and *y* that satisfy the equation.

- a. 2x 7i = 10 + yi.
- b. x + 3i = 9 yi
- c. 9 + 4yi = -2x + 3i

*Core Concept: Sums and Differences of Complex Numbers

To add (or subtract) two complex numbers, add (or subtract) their real parts and their imaginary parts separately.

Sum of Complex Numbers:

Difference of Complex Numbers:

- (3) Add or subtract. Write the answer in standard form. a. (8 - *i*) + (5 + 4*i*) b. (7 - 6i) - (3 - 6i)c. 13 - (2 + 7i) + 5i
- (4) Multiply. Write the answer in standard form. a. 4*i*(-6 + *i*) b. (9 - 2i)(-4 + 7i)
- (5) Perform the operation. Write the answer in standard form. a. (9 - i) + (-6 + 7i)
 - b. (3 + 7i) (8 2i)

c.
$$-4 - (1 + i) - (5 + 9i)$$

d. (-3*i*)(10*i*)

- e. *i*(8 *i*)
- f. (3 + i)(5 i)
- (6) Solve each equation. a. $x^2 + 4 = 0$

b. $2x^2 - 11 = -47$

(7) Find the zeros of $f(x) = 4x^2 + 20$.

Mixed Practice		
Solve each equation.		
1. $x^2 = -13$	2. $x^2 + 11 = 3$	3. $3x^2 - 7 = -31$

Find the zeros of the function. 4. $f(x) = x^2 + 7$ 5. $f(x) = -x^2 - 4$ 6. $f(x) = 9x^2 + 1$