Algebra 2
Notes: 3.1
Name
Date
\qquad
Solving Quadratic Equations by Graphing, Using Square Roots, and Factoring

The Basics:

A \qquad is an equation that can be written in the standard form \qquad , where a, b, and c are real numbers and $a \neq 0$. A \qquad
\qquad is a solution of the equation.

I. Solving Quadratic Equations by Graphing

Find the x-intercepts of the related function $y=a x^{2}+b x+c$.

Example \#1

Find the zeros of $f(x)=-x^{2}+6 x-8$ by using a graph and a table.

II. Solving Quadratic Equations Using Square Roots

Write the equation in the form $u^{2}=d$, where u is an algebraic expression, and solve by taking the square root of each side. Remember to account for the positive and negative square root.

Example \#2
Solve each equation using square roots.
a) $3 x^{2}-4=71$
b) $(x-3)^{2}=16$
c) $4 x^{2}+3=11$
d) $2(x-5)^{2}=54$

Additional Examples - Each problem should be solved using square roots.
3. $(x+6)^{2}=28$
4. $x^{2}-49=0$
5. $-2 x^{2}=-72$

III. Solving Quadratic Equations by Factoring

Zero Product Property:
For all real numbers a and b, if \qquad , then \qquad .
*You can use the Zero Product Property to solve some quadratic equations by factoring.

Example \#6

Find the zeros of each function by factoring.
a) $f(x)=x^{2}-8 x+12$
b) $g(x)=3 x^{2}+12 x$
c) $h(x)=x^{2}-5 x+6$

Example \#7

Find the roots of each equation by factoring.
a) $28 x=4 x^{2}-72$
b) $9 x^{2}=1$

Additional Examples - Each problem should be solved by factoring.
8. Find the roots of the following equation: $5 x^{2}+20=20 x$
9. Find the zeros of the following function:

$$
g(x)=9 x^{2}-x
$$

10. Find the zeros of the following function:

$$
h(x)=x^{2}-13 x+14
$$

11. Find the dimensions of a rectangle with an area of $210 \mathrm{~cm}^{2}$ and whose length is one more than its width.
