Factoring Polynomials

Recall that if a number is divided by any of its factors, the remainder is 0 . Likewise, if a polynomial is divided by any of its factors, the remainder is 0 .
The Remainder Theorem states that if a polynomial is divided by $(x-a)$, the remainder is the value of the function at a. So, if ($x-a$) is a factor of $P(x)$, then $P(a)=0$.

Factor Theorem	EXAMPLE
THEOREM	For any polynomial $P(x)$, $(x-a)$ is a factor of $P(x)$
Because $P(1)=1^{2}-1=0$,	
if and only if $P(a)=0$.	$P(x)=x^{2}-1$.

3-4 Factoring Polynomials
Example 1: Determining Whether a Linear Binomial is a Factor
Determine whether the given binomial is a factor of the polynomial $P(x)$.
A. $(x+2) ;\left(4 x^{2}-2 x+5\right)$
-21

$$
p(-2) \neq 0
$$

\qquad
B. $(3 x-6)$; $\left(3 x^{4}-6 x^{3}+3 x^{2}+3 x-30\right)$

* divide everything by $3(x-2) ;\left(x^{4}-2 x^{3}+2 x^{2}+x-10\right)$

$$
\text { yes } b \mid c \quad P(2)=0
$$

3-4 Factoring Polynomials
Check It Out! Example 1
Determine whether the given binomial is a factor of the polynomial $P(x)$.
A. $(x+1) ;\left(x^{2}-3 x+1\right)$

| $-1 \|$1 -3
 -1 4 | No b / c | $P(-1) \neq 0$ |
| ---: | ---: | ---: | ---: |
| $1-4$ | -4 | b / c remainder $\ddagger 0$ |

B. $(\mathbf{x}+\mathbf{2}) ;\left(3 \mathbf{x}^{\mathbf{4}} \mathbf{+} \mathbf{6} \mathbf{x}^{\mathbf{3}} \mathbf{- 5 x} \mathbf{- 1 0}\right) \quad$ Yes $\left|\left|\left.\right|^{c}, 2\right)=0\right.$

Write $P(x)$ in factored form

$$
P(x)=\left(3 x^{3}-5\right)(x+2)
$$

3-4 Factoring Polynomials
Example 2: Factoring by Grouping

$$
\begin{aligned}
& \text { Factor: }\left(x^{3}-x^{2}\right)(-25 x+25 .) \quad x^{3}-x^{2}-25 x+25 \\
& x^{2}(x-1)-25(x-1) \\
& (x-1)\left(x^{2}-25\right) \\
& (x-1)(x+5)(x-5)
\end{aligned}
$$

Factoring Polynomials

Example 2 Continued

Check Use the table feature of your calculator to compare the original expression and the factored form.

X	Y_{1}	Yz
0	$\stackrel{3}{5}$	8
\%	-1	-81
	-	-
,	!	S

The table shows that the original function and the factored form have the same function values.

3-4 Factoring Polynomials
Check It Out! Example 2a

$$
\begin{aligned}
& \text { (2) } \begin{array}{l}
\text { Factor: } \mathbf{x}^{\mathbf{3}}-\mathbf{2 x} 2 \mid-\mathbf{9 x}+\mathbf{1 8} . \\
x^{2}(x-2)^{2}-9(x-2) \\
\left(\frac{\left.x^{2}-9\right)(x-2)}{(x+3)(x-3)(x-2))}\right. \\
\text { Factor } 2 x^{3}+x^{2}+8 x+4 \\
x^{2}(2 x+1)+4(2 x+1) \\
\left(\left(x^{2}+4\right)(2 x+1)\right)
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& (x+2)^{2} / 2 \\
& x^{2}+4 x+4
\end{aligned}
$$

3-4
 Factoring Polynomials

Check It Out! Example 2a Continued

Check Use the table feature of your calculator to compare the original expression and the factored form.

X	Y1	Yz
0	$\begin{array}{\|l} \hline 18 \\ \hline 0 \\ 0 \\ 0 \\ 14 \\ 48 \\ 10 \\ 108 \end{array}$	18
1		8
4		${ }_{14}$
,		
\% $=2$		

The table shows that the original function and the factored form have the same function values.

Factoring Polynomials

Check It Out! Example 2b

Factor: $\mathbf{2 x}{ }^{\mathbf{3}}+\mathrm{x}^{\mathbf{2}}+\mathbf{8 x}+\mathbf{4}$.

3-4
 Factoring Polynomials

Just as there is a special rule for factoring the difference of two squares, there are special rules for factoring the sum or difference of two cubes.

\section*{Factoring the Sum and the Difference of Trro Cubes
 | METHOD | ALGEBRA |
| :---: | :---: |
| Sum of two cubes | $a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)$ |
| Difference of two cubes | $a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$ |}

3-4 Factoring Polynomials
Example 3A: Factoring the Sum or Difference of Two Cubes
Factor the expression.

$$
a=x \quad b=3
$$

$$
\begin{aligned}
& \mathbf{4 \mathbf { x } ^ { 4 } + \mathbf { 1 0 8 x } (x) ^ { 3 } + (3) ^ { 3 }} \\
& 4 x\left(x^{3}+27\right) \\
& 4 x(x+3)\left(x^{2}-3 x+9\right)
\end{aligned}
$$

3-4 Factoring Polynomials

Example 3B: Factoring the Sum or Difference of Two Cubes
Factor the expression.
125d \mathbf{d}^{3} - $\quad a=5 d \quad b=2$

$$
(5 d-2)\left(25 d^{2}+10 d+4\right)
$$

Factoring Polynomials

Check It Out! Example 3a

Factor the expression.

$$
8+z^{6}=\left(2+z^{2}\right)\left(4-2 z^{2}+z^{4}\right)
$$

3-4 Factoring Polynomials
Check It Out! Example Bb
Factor the expression.

$$
\begin{aligned}
& \mathbf{2} \mathbf{x}^{5}-\mathbf{1 6} \mathbf{x}^{2} \\
& 2 x^{2}(x-2)\left(x^{2}+2 x+4\right)
\end{aligned}
$$

