Recall that if a number is divided by any of its factors, the remainder is 0. Likewise, if a polynomial is divided by any of its factors, the remainder is 0.

The Remainder Theorem states that if a polynomial is divided by (x - a), the remainder is the value of the function at a. So, if (x - a) is a factor of P(x), then P(a) = 0.

Factor Theorem			
	THEOREM	EXAMPLE	
	For any polynomial $P(x)$,	Because $P(1) = 1^2 - 1 = 0$,	
	(x - a) is a factor of $P(x)$	(x - 1) is a factor of	
	if and only if $P(a) = 0$.	$P(x) = x^2 - 1.$	

Example 1: Determining Whether a Linear Binomial is a Factor

Determine whether the given binomial is a factor of the polynomial P(x).

Holt McDougal Algebra 2

Check It Out! Example 1

Determine whether the given binomial is a factor of the polynomial P(x).

A.
$$(x + 1); (x^2 - 3x + 1)$$

 $-1 + 3 + No = b/c P(-1) \pm 0$
 $-1 + 5 = b/c remainder \pm 0$
B. $(x + 2); (3x^4 + 6x^3 - 5x - 10) = 425 = 0$
Write P(x) in factored form: $p(-2) = 0$
 $P(x) = (3x^3 - 5)(x+2) = 300 - 50$

Example 2: Factoring by Grouping Factor: $(x^3 - x^2) - 25x + 25$. $\chi^3 - \chi^2 - 25\chi + 25$ $\chi^{2}(x-1) - 25(x-1)$ $(\chi - 1)(\chi^2 - 25)$ (x-1)(x+5)(x-5)

Holt McDougal Algebra 2

Example 2 Continued

Check Use the table feature of your calculator to compare the original expression and the factored form.

The table shows that the original function and the factored form have the same function values. \checkmark

Holt McDougal Algebra 2

Check It Out! Example 2a

 $(x+2)^{2}$ $x^{2}+1/x+4$

Holt McDougal Algebra 2

Check It Out! Example 2a Continued

Check Use the table feature of your calculator to compare the original expression and the factored form.

The table shows that the original function and the factored form have the same function values. \checkmark

Holt McDougal Algebra 2

Check It Out! Example 2b

Factor: $2x^3 + x^2 + 8x + 4$.

Holt McDougal Algebra 2

Just as there is a special rule for factoring the difference of two squares, there are special rules for factoring the sum or difference of two cubes.

Factoring the Sum and the Difference of Two Cubes		
	METHOD	ALGEBRA
	Sum of two cubes	$a^{3} + b^{3} = (a + b)(a^{2} - ab + b^{2})$
	Difference of two cubes	$a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2})$

Example 3A: Factoring the Sum or Difference of Two Cubes

Factor the expression. a = x b^{-3} $4x^{4} + 108x(x)^{3} + (3)^{3}$ $4x(x^{3} + 27)$ $4x(x+3)(x^{2} - 3x + 9)$

Holt McDougal Algebra 2

Example 3B: Factoring the Sum or Difference of Two Cubes

Factor the expression.

- $125d^3 8$ a = 5d = 2
 - $(5d-2)(25d^2+10d+4)$

Holt McDougal Algebra 2

Check It Out! Example 3a

Factor the expression.

$$8 + z^{6} = (2 + z^{2})(4 - 2z^{2} + z^{4})$$

Holt McDougal Algebra 2

Check It Out! Example 3b

Factor the expression.

 $2x^5 - 16x^2$

 $2\chi^{2}(\chi-2)(\chi^{2}+2\chi+1)$

Holt McDougal Algebra 2