2.4 Modeling with Quadratic Functions

G Core Concept

Writing Quadratic Equations

Given a point and the vertex (h, k)

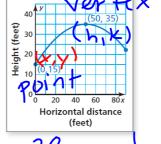
Given a point and x-intercepts p and q

Given three points

Use vertex form:

$$y = a(x - h)^2 + k$$

Use intercept form:


$$y = a(x - p)(x - q)$$

Write and solve a system of three equations in three variables.

- 1. The graph shows the parabolic path of a performer who is shot out of a cannon, where y is the height (in feet) and x is the horizontal distance traveled (in feet).
- a. Write an equation of the parabola.

$$y=a(x-h)^2+K$$

 $15=a(0-50)^2+35$

|5 = 2500a + 35

 $\frac{2500a}{1 (1 + 50)^2} = \frac{1}{2500} = \frac{1}{125}$

b. The performer lands in a net 90 feet from the cannon. What is the height of the net?

$$y = \frac{1}{125} (90 - 50)^2 + 35$$
 22.2 feet

2. Write an equation of the parabola that passes through the point (-1, 2) and has vertex (4, -9). (h,k)

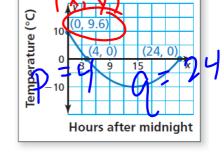
$$2 = a(-1-4)^{2} - 9$$

$$2 = a(-1-4)^{2} - 9$$

$$2 = a(-5)^{2} - 9$$

$$2 = 25a - 9$$

$$11 = 25a$$


$$a = \frac{1}{25}$$

$$y = \frac{11}{25}(x - 4)^{2} - 9$$

- 3. A meteorologist creates a parabola to predict the temperature tomorrow, where x is the number of hours after midnight and y is the temperature (in degrees Celsius).
- a. Write a function that models the temperature over time.

ature over time.

$$y = \alpha(x - p)(x - q)$$

Temperature Forecast

$$96=a(0-4)(0-24)$$

9.6= α (-4)(-24) b. What is the coldest temperature? $\alpha = 1/10$

$$5 = \alpha(2+4)(x-1)$$
 $y=0$
 $5 = \alpha(4)(x-2)$
 $5 = -8\alpha$

$$a = -\frac{5}{8}(x+2)(x-4)$$

5. NASA can create a weightless environment by flying a plane in parabolic paths. The table shows heights *h* (in feet) of a plane *t* seconds after starting the flight path. After about 20.8 seconds, passengers begin to experience a weightless environment. Write and evaluate a function to approximate the height at which this occurs.

Time, t	Height, h
10	26,900
15	29,025
20	30,600
25	31,625
30	32,100
35	32,025
40	31,400

$$(10, 26900) \qquad 26900 = a(10^{2}) + b(10) + c - (15, 29025) \qquad 29025 = a(15^{2}) + b(15) + c - (20, 30600) \qquad 30600 = a(20^{2}) + b(20) + c$$

$$\frac{--->(26900 = 100a + 10b + c)}{29025 = 225a + 15b + c}$$

$$\frac{--->}{30600} = 4000a + 20b + c$$

$$26900 = 100(-11) + 10(700) + C$$

$$26900 = -1100 + 7000 + C$$

$$26900 = 5900 + C$$

$$C = 21000$$

$$-26900 = -1000 - 100 - C$$

$$+ 29025 = 2250 + 150 + C$$

$$2125 = 1250 + 50$$

$$3700 = 3000 + 100$$

$$-2(2125-125a+5b)$$

$$3700 = 300a+10k$$

$$-4250 = -250a-10b$$

$$-550 = 50a$$

$$0 = -11$$

$$2125 = 125(-11) + 5b$$

$$2125 = -1375 + 5b$$

$$3500 = 5b$$

$$b = 700$$

$$7 = -11x^{2} + 700x + 21000$$

6. Write an equation of the parabola that passes through the points
$$(-1, 4)$$
, $(0, 1)$, and $(2, 7)$.

$$a(-1)^{2} + b(-1) + C = 4 \implies a - b + C = 4$$

$$a(0)^{2} + b(0) + C = 1$$

$$a(2)^{2} + b(2) + C = 7 \qquad 4a + 2b + C = 7$$

$$a - b + 1 = 4 \implies (a - b = 3)$$

$$4a + 2b = 6$$

$$4a + 2b = 6$$

$$4a - 2b = 6$$