Algebra 2Name_____Notes: 2.1 Transformations of Quadratic FunctionsDate______Block____

Make a table of values and use it to graph the following functions on the same coordinate plane. Use the same *x*-values for each function. Describe how the graphs of the last three functions differ from the graph of $f(x) = x^2$.

Use the graph of $f(x) = x^2$ as a guide, describe the transformations of each function.

1. $g(x) = (x-2)^2 + 4$ 2. $g(x) = (x+2)^2 - 3$ 3. $g(x) = x^2 - 5$

Use the graph of $f(x) = x^2$ as a guide, describe the transformations of each function.

4.
$$g(x) = -\frac{1}{4}x^2$$

5. $g(x) = (3x)^2$
6. $g(x) = (2x)^2$
7. $g(x) = -\frac{1}{2}x^2$

If a parabola opens upward, it has a lowest point. If a parabola opens downward, it has a highest point. This lowest or highest point is the _____.

The parent function $f(x) = x^2$ has its vertex at the _____. You can identify the vertex of other quadratic functions by analyzing the function in *vertex form*. The <u>vertex form</u> of a quadratic function is

_____, where *a*, *h*, and *k* are constants.

Vertex Form of a Quadratic Function

Because the vertex is translated *h* horizontal units and *k* vertical from the origin, **the vertex of the parabola is at** ______.

Use the description to write the quadratic function in vertex form.

- 8. The parent function $f(x) = x^2$ is vertically stretched by a factor of $\frac{4}{3}$ and then translated 2 units left and 5 units down to create *g*.
- 9. The parent function $f(x) = x^2$ is vertically compressed by a factor of $\frac{2}{3}$ and then translated 2 units right and 4 units down to create *g*.
- 10. The parent function $f(x) = x^2$ is reflected across the *x*-axis and translated 5 units left and 1 unit up to create *g*.