Algebra 2
Notes: 2.1 Transformations of Quadratic Functions
— Block \qquad
Make a table of values and use it to graph the following functions on the same coordinate plane. Use the same x-values for each function. Describe how the graphs of the last three functions differ from the graph of $f(x)=x^{2}$.

Use the graph of $f(x)=x^{2}$ as a guide, describe the transformations of each function.

1. $g(x)=(x-2)^{2}+4$
2. $g(x)=(x+2)^{2}-3$
3. $g(x)=x^{2}-5$

Reflections

Reflection Across y-axis
Input values
change.
$f(x)=x^{2}$

$f(-x)=(-x)^{2}=x^{2}$$\longrightarrow$| Reflection Across x-axis |
| :--- |
| Output values |
| change. |
| $f(x)=x^{2}$ |
| $-f(x)=-\left(x^{2}\right)$ |
| $=-x^{2}$ |

Stretches and Compressions

Horizontal Stretch/Compression by a Factor of $|b|$

Vertical Stretch/Compression by a Factor of |a|
 change.
$f(x)=x^{2}$
$a \cdot f(x)=a x^{2}$

Use the graph of $f(x)=x^{2}$ as a guide, describe the transformations of each function.
4. $g(x)=-\frac{1}{4} x^{2}$
5. $g(x)=(3 x)^{2}$
6. $g(x)=(2 x)^{2}$
7. $g(x)=-\frac{1}{2} x^{2}$

If a parabola opens upward, it has a lowest point. If a parabola opens downward, it has a highest point. This lowest or highest point is the \qquad .

The parent function $f(x)=x^{2}$ has its vertex at the \qquad . You can identify the vertex of other quadratic functions by analyzing the function in vertex form. The vertex form of a quadratic function is , where a, h, and k are constants.

Vertex Form of a Quadratic Function $f(x)=a(x-h)^{2}+k$

Because the vertex is translated h horizontal units and k vertical from the origin, the vertex of the parabola is at \qquad .

Use the description to write the quadratic function in vertex form.
8. The parent function $f(x)=x^{2}$ is vertically stretched by a factor of $\frac{4}{3}$ and then translated 2 units left and 5 units down to create g.
9. The parent function $f(x)=x^{2}$ is vertically compressed by a factor of $\frac{2}{3}$ and then translated 2 units right and 4 units down to create g.
10. The parent function $f(x)=x^{2}$ is reflected across the x-axis and translated 5 units left and 1 unit up to create g.

