Expansion, the boring and tedious way:

$$(a+b)^0 =$$

$$(a+b)^1 =$$

$$(a+b)^2 =$$

$$(a+b)^3 =$$

$$(a+b)^4 =$$

$$(a+b)^5 =$$

The AMAZING Binomial Theorem:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

where $\binom{n}{k}$ is said "n choose k" and represents the number of ways to select k things from n.

where
$$\binom{n}{k} = {}_{n}C_{k} = \frac{n!}{k!(n-k)!}$$
 and $n! = n(n-1)(n-2)...(2)1$

$$n! = n(n-1)(n-2)...(2)1$$

EXAMPLES:

Evaluate:

Binomial Expansion, using the amazing Binomial Theorem: $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$

$$(a + b)^3$$

$$(2x - 3y)^3$$

You try! Expand completely.

$$(5x + 3y)^4$$

Pascal's Triangle	
$(a + b)^0 =$ $(a + b)^1 =$ $(a + b)^2 =$ $(a + b)^3 =$ $(a + b)^4 =$ $(a + b)^5 =$:	
Looking at just the coefficients:	1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1
Which happens to be the same as:	${}_{0}C_{0}$ ${}_{1}C_{0} {}_{1}C_{1}$ ${}_{2}C_{0} {}_{2}C_{1} {}_{2}C_{2}$ ${}_{3}C_{0} {}_{3}C_{1} {}_{3}C_{2} {}_{3}C_{3}$ ${}_{4}C_{0} {}_{4}C_{1} {}_{4}C_{2} {}_{4}C_{3} {}_{4}C_{4}$ ${}_{5}C_{0} {}_{5}C_{1} {}_{5}C_{2} {}_{5}C_{3} {}_{5}C_{4} {}_{5}C_{5}$ \vdots

EXAMPLES:

Find each term described.

- 1. The third term in the expansion $(y + 5)^4$
- 2. The third term in the expansion $(2x 3)^6$

Expand completely.

3.
$$(2 + 3y)^4$$

