14.2 Arithmetic and Geometric Sequences

Two common sequences that appear frequently in mathematics are the arithmetic and geometric sequences.

Arithmetic Sequence

An arithmetic sequence is one in which the same number is added or subtracted from each term to get the next term in the sequence. The number you add or subtract is called the common difference.

Handy rules involving an arithmetic sequence:

$$
\begin{aligned}
& a_{1}=a_{1} \\
& a_{2}=a_{1}+d \\
& a_{3}=a_{1}+2 d \\
& a_{4}=a_{1}+3 d \\
& a_{5}=a_{1}+4 d
\end{aligned}
$$

Nth term of an Arithmetic Sequence

The nth term of an arithmetic sequence with first term a_{1} and common difference d is given by:

$$
a_{n}=a_{1}+(n-1) d
$$

Example 1. Are the following arithmetic sequences?

$$
3,8,13,18,23,28 \ldots \quad-2,-12,-22,-32, \ldots
$$

$2,4,8,16,32, \ldots$
$14,14.5,15,15.5,16 .$.

Example 2. Given two terms in an arithmetic sequence, find the common difference, the 52nd term, and the explicit formula.

$$
a_{20}=70 \quad a_{33}=96
$$

Time-out of for some math history....

Sum of a Finite Arithmetic Sequence

The sum of the first n terms of an arithmetic sequence is given by:

$$
S_{n}=\frac{n\left(a_{1}+a_{n}\right)}{2}
$$

Example 3: Find the sum of the first 20 terms of the arithmetic series:
a. $2+6+10+14+18+\ldots$
b. Suppose the sum of the series has a sum of 2178 . Find n such that $S_{n}=2178$.

Geometric Sequence

A geometric sequence is one in which the same number is multiplied or divided by each term to get the next term in the sequence. The number you multiply or divide by is called the common ratio, usually denoted by r.

Determine if the following sequences are arithmetic, geometric or neither.
4. $1,2,6,24,120$,...
5. $81,27,9,3,1, \ldots$
6. $5,10,15,20,25, \ldots$

Nth term of a Geometric Sequence

The nth term of a geometric sequence with first term a_{1} and common ratio r is given by:

$$
a_{n}=a_{1} r^{n-1}
$$

Example 7: The third term of a geometric series equals 64 while the common ratio is 2.
a. Write a rule for the nth term.
b. Find the $9^{\text {th }}$ term

14.2 Arithmetic and Geometric Sequences

Sum of a Finite Geometric Series

The nth term of a geometric sequence with first term a_{1} and common ratio r is given by:

$$
S_{n}=a_{1}\left(\frac{1-r^{n}}{1-r}\right)
$$

Example 8: Find the sum of the first 10 terms of the series $1+5+25+125+\ldots$

Example 9. For which term would $S_{n}=3906$?
\qquad
\qquad

