10-3 The Unit Circle

$\sqrt{3}$ Answers should be exact and given in simplest radical form.

$\boldsymbol{\theta}$ (in degrees)	$\mathbf{3 0 ^ { \circ }}$	45°	60°
$\boldsymbol{\theta}$ (in radians)	$\frac{\pi}{6}$	$\frac{\pi 7}{4}$	$\frac{\pi}{3}$
$\sin \theta$	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$
$\cos \theta$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$
$\tan \theta$	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$

10-3 The Unit Circle
WK
Angles Angle Measure
\# 9

$$
\begin{aligned}
& -154^{\circ} 47^{\prime} 42^{11}=-154.795^{\circ} \\
& 47^{*} \cdot \frac{1^{\circ}}{60^{*}}=0.783^{\circ} \\
& 42^{\circ} \cdot \frac{1^{\circ}}{3600^{\circ}}=0.01167
\end{aligned}
$$

10-3 The Unit Circle

$2 \frac{1}{6} \pi$
$\frac{3 \pi}{6}-\frac{2 \pi}{6}=\frac{\pi}{6}$

10-3 The Unit Circle

A unit circle is a circle The Unit Circle with a radius of 1 unit. For every point $P(x, y)$ on the unit circle, the value of r is 1 . Therefore, for an angle θ in the standard position:
$\sin \theta=\frac{y}{r}=\frac{y}{1}=y$
$\cos \theta=\frac{x}{r}=\frac{x}{1}=x$

$\tan \theta=\frac{y}{x}$

10-3 The Unit Circle

So the coordinates of P can be written as $(\cos \theta, \sin \theta)$.

The diagram shows the equivalent degree and radian measure of special angles, as well as the corresponding x and y-coordinates of points on the unit circle.

10-3 The Unit Circle

Example 1: Using the Unit Circle to Evaluate Trigonometric Functions
Use the unit circle to find the exact value of each trigonometric function.

$$
\begin{aligned}
& \cos 225^{\circ}=-\frac{\sqrt{2}}{2} \\
& \tan \frac{5 \pi}{6}=\frac{y}{x}=\frac{\sin \theta}{\cos \theta}=\frac{1 / 2}{-\sqrt{3} / x}=-\frac{1}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=-\frac{\sqrt{3}}{3} \\
& \frac{1}{2} \cdot-\frac{x}{\sqrt{3}}
\end{aligned}
$$

10-3 The Unit Circle

Check It Out! Example 1a

Use the unit circle to find the exact value of each trigonometric function.

$\sin 315^{\circ}=-\frac{\sqrt{2}}{2}$
$\tan 180^{\circ}=0$
$\cos \frac{4 \pi}{3}=-\frac{1}{2}$

10-3 The Unit Circle

The diagram shows how the signs of the trigonometric functions depend on the quadrant containing the terminal side of θ in standard position.

10-3 The Unit Circle

Example 2: Using Reference Angles to Evaluate

Trigonometric functions?

Use a reference angle to find the exact value of the sine, cosine, and tangent of 330°.
$\sin 330^{\circ}=-\frac{1}{2}$
$\cos 330^{\circ}=+\frac{\sqrt{3}}{2}$
$1 \tan 330^{\circ}=-\frac{\sqrt{3}}{3}$

10-3 The Unit Circle

Check It Out! Example 2b
Use a reference angle to find the exact value of the sine, cosine, and tangent of each angle.

$$
\begin{aligned}
& \frac{4 \pi}{3} \\
& \sin \frac{4 \pi}{3}=-\frac{\sqrt{3}}{2} \\
& \cos \frac{4 \pi}{3}=-\frac{1}{2} \\
& \tan \frac{4 \pi}{3}=+\sqrt{3}
\end{aligned}
$$

