Algebra 2 Honors Notes: 10.2 Extension

Name	
Date	Block

Radian Measure

A _______ is a unit of angle measure based on arc length. In a circle of radius, *r*, if a central angle

has a measure of 1 ______, then the length of the intercepted ______ is *r* units.

Recall: The circumference of a circle of radius *r* is _____. Therefore, an angle representing one _____

_____rotation measures ______radians.

Find the indicated angle measure in radians. Answers should be exact in terms of π .

Determine the quadrant in which each angle lies.

(1) $\frac{5\pi}{3}$	(2) $\frac{11\pi}{10}$
$(3) \ \frac{2\pi}{3}$	$(4) \ \frac{13\pi}{6}$
(5) 3.5	(6) 1.79

(7) 5.12 (8) 7.36

Converting Between Degrees and Radians

You can use the fact that ______ radians is equivalent to ______ to convert between radians and degrees.

Converting Angle Measures				
	DEGREES TO RADIANS	RADIANS TO DEGREES		
	Multiply the number of degrees by $\left(\frac{\pi \text{ radians}}{180^\circ}\right)$.	Multiply the number of radians by $\left(\frac{180^{\circ}}{\pi \text{ radians}}\right)$.		

Example 1: Converting Between Degrees and Radians

Convert each measure from degrees to radians or radians to degrees.

A.	-60°	
B.	$\frac{2\pi}{3}$	
C.	80°	
D.	$\frac{2\pi}{9}$	
E.	-36°	
F.	4π	

<u>Degrees-Minutes-Seconds</u>(D°M'S'')

_____ Minutes = _____ Degree

_____ Seconds = _____ Minute

.:_____=____=

Example 2: Converting D°M'S" to Decimal Degree	Example 3: Converting Decimal Degree to D°M'S"
A. 94°30'30"	A. 42.35°
B. 331°14'3"	B231.89°
C112°15'28"	C. 113.72°