Algebra 2 Honors
Notes: 10.2 Extension

Name \qquad
Date \qquad

Radian Measure

A \qquad is a unit of angle measure based on arc length. In a circle of radius, r, if a central angle has a measure of 1 \qquad , then the length of the intercepted \qquad is r units.

Recall: The circumference of a circle of radius r is \qquad . Therefore, an angle representing one \qquad
\qquad rotation measures \qquad radians.

Find the indicated angle measure in radians. Answers should be exact in terms of π.

Determine the quadrant in which each angle lies.
(1) $\frac{5 \pi}{3}$
(2) $\frac{11 \pi}{10}$
(3) $\frac{2 \pi}{3}$
(4) $\frac{13 \pi}{6}$
(5) 3.5
(6) 1.79
(7) 5.12
(8) 7.36

You can use the fact that \qquad radians is equivalent to \qquad to convert between radians and degrees.

Converting Angle Measures
DEGREES TO RADIANS RADIANS TO DEGREES Multiply the number of degrees by $\left(\frac{\pi \text { radians }}{180^{\circ}}\right)$. Multiply the number of radians by $\left(\frac{180^{\circ}}{\pi \text { radians }}\right)$. (

Example 1: Converting Between Degrees and Radians

Convert each measure from degrees to radians or radians to degrees.
A. -60°
B. $\frac{2 \pi}{3}$
C. 80°
D. $\frac{2 \pi}{9}$
E. -36°
F. 4π

Degrees-Minutes-Seconds(${ }^{\circ}{ }^{\circ}{ }^{\prime}{ }^{\prime}{ }^{\prime \prime}$)

\qquad Minutes $=$ \qquad Degree
\qquad Seconds $=$ \qquad Minute
\therefore \qquad $=$ \qquad

Example 2: Converting $D^{\circ} \mathbf{M}^{\prime}{ }^{\prime \prime}$ to Decimal Degree
A. $94^{\circ} 30^{\prime} 30^{\prime \prime}$
B. $331^{\circ} 14^{\prime} 3^{\prime \prime}$
B. -231.89°
C. $-112^{\circ} 15^{\prime} 28^{\prime \prime}$
C. 113.72°

