Algebra 2 Honors	Name	
Notes: 10.2	Date	Block
Angles of Rotation	Г	
An angle is inwl	nen its vertex	Positive Rotation
is at the origin and one ray is on the positive x-axis. Th	e	
of the angle is the ray on the <i>x</i> -axis. The other ray is ca	lled the	
of the angle.		
An is formed by rota	ting the terminal side and keeping	<u> </u>
the initial side in place. If the terminal side is rotated $\underline{\mathbf{c}}$	ounterclockwise, the angle	Negative Rotation
of rotation is positive. If the terminal side is rotated <u>clo</u>	ckwise , the angle of rotation	
is negative. The terminal side can be rotated more than	360°.	
Example 1: Drawing Angles in Standard Position	L	
Draw an angle with the given measure in standard posi	tion.	
a. 320° b110°	c. 99	0°
\uparrow		\uparrow
\leftarrow \rightarrow \leftarrow		
	,	

Coterminal Angles

_____ angles are angles in standard position with the same terminal side. One way to find the measure of an angle that is coterminal with an angle θ is to add or subtract integer multiples of 360°.

Example 2: Finding Coterminal Angles

Find the measures of a positive angle and a negative angle that are coterminal with each given angle.

b. 410° a. 65° c. -88°

Reference Angles

Example 3: Finding Reference Angles

Find the measure of the reference angle for each given angle.

a.	135°	b105°	c. 325°
	100	01 100	0.010

Evaluating Trigonometric Functions of Any Angle

Frigonometric Function	5		
For a point <i>P</i> (<i>x</i> , <i>y</i>) on the terminal side of θ in standard position and $r = \sqrt{x^2 + y^2}$,			
SINE	COSINE	TANGENT	
$\sin \theta = \frac{y}{r}$	$\cos\theta = \frac{x}{r}$	$\tan \theta = \frac{y}{x}, x \neq 0$	

Example 4: Finding Values of Trigonometric Functions

P (-6, 9) is a point on the terminal side of θ in standard position. Find the exact value of the six trigonometric functions for θ .

P(-3, 6) is a point on the terminal side of θ in standard position. Find the exact value of the six trigonometric functions for θ .