10-1 Right-Angle Trigonometry

Warm Up

1. Given the measure of one of the acute angles in a right triangle, find the measure of the other acute angle.
a. $45^{\circ} 45^{\circ}$
b. $30^{\circ} 60^{\circ}$
c. $66^{\circ} 24^{\circ}$
d. $38^{\circ} \quad 52^{\circ}$

10-1 Right-Angle Trigonometry

2. Find the unknown length for each right triangle with legs a and b and hypotenuse c.
a. $b=12, c=13 \quad a=5$
b. $a=3, b=3 \quad c=3 \sqrt{2}$

10-1 Right-Angle Trigonometry

3. Find the value of the sine, cosine, and tangent functions for θ.

$\sin \theta=\frac{7}{25}$
SOH-CAH-TOA
$\cos \theta=\frac{24}{25}$
$\tan \theta=\frac{7}{24}$

10-1 Right-Angle Trigonometry

4. Find the value of x and y. Answers should be exact and given in simplest radical form when necessary.

$$
x=13 \quad y=13 \sqrt{3}
$$

5. Find the value of x and y. Answers should be exact and given in simplest radical form when necessary.

$$
y=11+11 \sqrt{3}
$$

10-1 Right-Angle Trigonometry

Special Right Triangle Road Map

Holt McDougal Algebra 2

10-1 Right-Angle Trigonometry

A trigonometric function is a function whose rule is given by a trigonometric ratio. A trigonometric ratio compares the lengths of two sides of a right triangle. The Greek letter theta θ is traditionally used to represent the measure of an acute angle in a right triangle. The values of trigonometric ratios depend upon θ.

10-1 Right-Angle Trigonometry

SOH-CAH-TDA

10-1 Right-Angle Trigonometry

The reciprocals of the sine, cosine, and tangent ratios are also trigonometric ratios. They are trigonometric functions, cosecant, secant, and cotangent.

Reciprocal Trigonometric Functions

WORDS	NUMBERS	SYMBOLS
The cosecant ((csc)) of angle θ is the reciprocal of the sine function.	$\csc \theta=\frac{5}{4}$$\sec \theta=\frac{5}{3}$	$\csc \theta=\frac{1}{\sin \theta}=\frac{\text { hyp. }}{\text { opp. }}$
The secant (sec) of angle θ is the reciprocal of the cosine function.		$\sec \theta=\frac{1}{\cos \theta}=\frac{\text { hyp. }}{\text { adj. }}$
The cotangent (cot) of angle θ is the reciprocal of the tangent function.	$\cot \theta=\frac{3}{4}$	$\cot \theta=\frac{1}{\tan \theta}=\frac{\mathrm{adj} .}{\mathrm{opp} .}$

10-1 Right-Angle Trigonometry

Example 1: Finding All Trigonometric Functions
Find the values of the six trigonometric functions for $\boldsymbol{\theta}$.

$$
\left.\begin{array}{ll}
\sin \theta=\frac{70}{74}=\frac{35}{37} & \csc \theta=\frac{37}{35} \\
\cos \theta=\frac{24}{74}=\frac{12}{37} & \sec \theta=\frac{37}{2} \\
\tan \theta=\frac{70}{24}=\frac{35}{12} & \cot \theta=\frac{12}{37}
\end{array}\right] \theta \theta
$$

10-1 Right-Angle Trigonometry

Trigonometric Ratios of Special Right Triangles

10-1 Right-Angle Trigonometry

Example 2: Sports Application
In a waterskiing competition, a jump ramp has the measurements shown. To the nearest foot, what is the height h above water

19 ft that a skier leaves the ramp?

$$
\begin{aligned}
& \sin 15.1^{\circ}=\frac{h}{19} \\
& h=19\left(\sin 15.1^{\circ}\right)
\end{aligned}
$$

10-1 Right-Angle Trigonometry

Check It Out! Example 2
A skateboard ramp will have a height of 12 in., and the angle between the ramp and the ground
 will be 17°. To the nearest inch, what will be the length \& of the ramp?

$\frac{12}{\sin 17^{\circ}} \operatorname{lo} \sin 17^{\circ}$

$$
l=\frac{12}{\sin 17^{\circ}}
$$

$$
l \approx 4 / \text { inches }
$$

10-1 Right-Angle Trigonometry

When an object is above or below another object, you can find distances indirectly by using the angle of elevation or the angle of depression between the objects.

10-1 Right-Angle Trigonometry

Example \not : Geology Application
A biologist whose eye level is $\mathbf{6} \mathbf{f t}$ above the ground measures the angle of elevation to the top of a tree to be 38.7°. If the biologist is standing $\mathbf{1 8 0} \mathbf{f t}$ from the tree's base, what is the height of the tree to the nearest foot?

$$
\begin{aligned}
& \tan 38.7^{\circ}=\frac{x}{180} \\
& x=180\left(\tan 38.7^{\circ}\right) \\
& x=144 \text { feet } \\
& \text { trees height is } 150 \text { feet }
\end{aligned}
$$

10-1 Right-Angle Trigonometry

Example 4

Mr. Domino is standing on a 40-foot ocean bluff near his home. He can see his two dogs on the beach below. If his line of sight is $\mathbf{6}$ feet above the ground and the angles of depression to his dogs are 34° and 48°, how far apart are the dogs?

