PreCalculus Midterm Exam Review

Chapters 2/7

1. Find the following parts of the function: domain, x-intercept, y-intercept, vertical asymptote(s), horizontal asymptote(s), and/or slant asymptote(s). Domain can just show restrictions (also identify any holes), axis intercepts are points, and asymptotes are equations for x and y. State NONE if the value does not exist.

a.)
$$f(x) = \frac{x-3}{x^2-3x-4}$$

b.)
$$f(x) = \frac{x^2 - 1}{x^2 - 2x - 3}$$

Domain:

x-intercept(s):

y-intercept(s):

H.A.:

V.A.: _____

S.A.:

Hole(s): _____

Domain:

x-intercept(s):

y-intercept(s):

H.A.: _____

V.A.: _____

S.A.:

Hole(s): _____

c.)
$$f(x) = \frac{x^2 - x - 2}{x - 1}$$

d.)
$$f(x) = \frac{2x+5}{x+1}$$

Domain:

x-intercept(s):

y-intercept(s):

H.A.:

V.A.: _____

S.A.:

Hole(s): _____

Domain:

x-intercept(s):

y-intercept(s):

H.A.:

V.A.: _____

S.A.:_____

Hole(s): _____

In 2 - 3, find the partial fraction decomposition of each.

$$2. \ \frac{-5x+4}{x^2-x}$$

$$3.\frac{-7x-15}{x^2+6x+9}$$

Chapter 3

In 4 - 6, evaluate each expression WITHOUT A CALCULATOR.

$$4.\frac{\log_{12}12^{36}}{\log_44^{18}}$$

5.
$$\ln e^{5a}$$

6.
$$\log_4 320 - \log_4 5$$

- 7. Use the change of base formula to evaluate: $\log_5 7$
- 8. Use the properties of logarithms to expand: $\ln \frac{\sqrt{x^3 y^2}}{z}$.
- 9. Use the properties of logarithms to expression the following expression as a single logarithm:

$$3\ln(x-2) + 2\ln(x+2)$$

In 10 - 12, solve each equation algebraically. When necessary, round your result to the nearest thousandth.

10.
$$3^{2x} - 5 = 9$$

11.
$$3 + \log_2 3x = 5$$

12.
$$\log(x) + \log(x - 21) = 2$$

13.	\mathbf{T}	the number of bacteria present in culture $N(t)$ at time t hours is given by $N(t) = 3000(2)^{t}$.
	a.	What is the initial population?

- b. How much bacteria are present after 24 hours?
- c. How long will it take the population to triple in size?
- 14. The number of students infected with flu after t days at Washington High School is modeled by the following function: $P(t) = \frac{1600}{1 + 99e^{-0.4t}}$
 - a. What was the initial number of infected students?
 - b. After 5 days, how many students will be infected?
 - c. What is the maximum number of students that will be infected?
- 15. The number of bacteria in a cup of water is modeled by a logistic curve. The limit to growth of the bacteria is 3500. The initial bacteria count is 100. After 3 hours, the bacteria count rises to 1450. Write the logistic function of the bacteria count.

Chapter 4, Part I

16. Convert the angle measure from degrees to radians.

a.)
$$-270^{\circ}$$

17. Convert the angle measure from radians to degrees.

a.)
$$\frac{7\pi}{3}$$

b.)
$$\frac{-13\pi}{60}$$

- 18. a.) If the Earth rotates once every 24 hours, find the angular speed in radians/hour.
 - b.) If a fan rotates 30 times in a minute, find the angular speed in radians/hour.
 - c.) If a ferris wheel rotates 4 times per minute, find the angular speed in radians/second.

19. Find the six trigonometric ratios of $\angle A$.

- 20. Given $\sin \theta = \frac{4}{5}$ in Quadrant I, find the remaining 5 trig ratios.
- 21. Given $\csc \theta = \frac{17}{4}$ in Quadrant I, find the remaining 5 trig ratios.
- 22. Use a calculator to evaluate each function.
 - a.) sin 41°

- b.) cot 71.5°
- c.) $\cot \frac{\pi}{16}$

- d.) $\tan \frac{\pi}{8}$
- 23. John wants to measure the height of a tree. He walks exactly 100 feet from the base of the tree and looks up. The angle from the ground to the top of the tree is 33°. How tall is the tree?

24. A bird sits on top of a lamppost. The angle of depression from the bird to the feet of an observer standing away from the lamppost is 35°. The distance from the bird to the observer is 25 meters. How tall is the lamppost?

25. Determine two co-terminal angles (one positive and one negative) for each angle.

a.)
$$\theta = 52^{\circ}$$

b.)
$$\theta = \frac{7\pi}{8}$$

26. Find the indicated trigonometric value in the specified quadrant.

a.)
$$\sec \theta = -\frac{9}{4}$$
; *QIII*; $\tan \theta$

b.)
$$\cot \theta = -3$$
; QII ; $\sin \theta$

Chapter 4, Part II

27. Find the period and amplitude.

a.)
$$y = 3\sin 2x$$

b.)
$$y = \frac{2}{3}\sin \pi x$$

$$c.) y = \frac{3}{4}\cos\frac{\pi}{12}x$$

28. Identify the transformation from f to g.

a.)
$$f(x) = \sin x$$
$$g(x) = -4\sin x$$

b.)
$$f(x) = \cos x$$
$$g(x) = -\cos(x - \pi)$$

c.)
$$f(x) = 4\sin \pi x$$
$$g(x) = 4\sin \pi x - 2$$

29. Find the max and min.

a.)
$$y = 3\sin x$$

$$b.) y = \frac{1}{2}\sin(x - \pi)$$

a.)
$$y = 3\sin 2x - 1$$

b.)
$$y = -\cos(2x + \pi)$$

c.)
$$y = \tan x$$

31. Find the exact value of the expression.

a.)
$$\sin\left(\arctan\frac{4}{3}\right)$$

b.)
$$\cos\left(\arcsin\frac{24}{25}\right)$$

c.)
$$\sec\left(\arctan\left(-\frac{3}{5}\right)\right)$$

32. Find the exact value of y without a calculator.

a.)
$$y = \sin^{-1} \left(\frac{\sqrt{3}}{2} \right)$$

b.)
$$y = \arctan(1)$$

Chapter 5

33. Simplify the expression: $\cos \theta - \cos \theta \sin^2 \theta$.

34. Simplify the expression: $\frac{\cos^2 x + \sin^2 x}{\cot^2 x - \csc^2 x}.$

35. Simplify the expression: $\cos x + \sin x \tan x$.

36. Factor: $\sin^2 x + \sin x - 2$.

37. Simplify the expression: $\frac{\sin^2 x - 1}{1 + \sin x}$.