Name	
Date	Block

SHOW ALL WORK!!

In 1 - 3, identify the parent function graphed by writing the name or the equation. Then identify the type of symmetry and the domain and range (using interval notation).

In 4 – 6, using the graph of f(x) = |x| as a guide, describe the transformations of each function and identify its domain and range.

4. $g(x) = 2 x - 4$	5. $h(x) = -2 x - 3 + 1$	6. $k(x) = 0.2 x+1 - 2$	
Transformations:	Transformations:	Transformations:	
D	D	D	
D:	D:	D:	
R:	R:	R:	

In 7-8, write a rule for the piecewise function.

In 9 – 10, graph the absolute value function. State the domain and range.

11.	2x - 2y + z = 3	12.	3x + 2y = 12
	5y - z = -31		2y - 5z = 1
	x + 3y + 2z = -21		x + y + z = 6

In 13 – 17, perform the indicated operation.

13.
$$(-4x^4 + 3x^2 - 3x) + (-12x^4 - 3x^3 + 5x^2 - 8x + 1)$$

14.
$$(3x^2 - 7x + 4) - (-4x^2 - 12x + 8)$$

15. (3x-7)(2x+1)

16.
$$(x - 1)(x + 3)(x + 4)$$

17. $(3x-1)^2$

18. Classify each function by its function family. Then describe the transformation of the parent function. State the Domain and Range.

a.
$$g(x) = 7$$

b. $h(x) = x^2 + 5$
c. $h(x) = x - 9$
d. $g(x) = \frac{1}{3}|x - 1| + 4$
e. $g(x) = -(x + 6)^2 - 5$
f. $h(x) = 3x - 7$
Factor completely.
19. $x^2 - 3x - 28$
20. $x^2 + 19x + 90$
21. $4x^2 - 1$
22. $x^4 - 14x^2 + 49$
23. $8 - x^3$
24. $3x^2 - 27$
25. $x^3 + x^2 - 9x - 9$
26. $8x^3 - 18x^2 - 5x$

27. $x^2 - 5x - 36$ 28. $x^4 - 64$

29. $4x^2 - 3x - 1$ 30. $x^3 + 5x^2 + x + 5$

Find the value of c that makes the expression a perfect square trinomial. Then write the expression as the square of a binomial.

31. $x^2 + 8x + c$	32.	$x^2 + 14x + c$
--------------------	-----	-----------------

Solve using any method.

33. $x^2 = -64$ 34. $2x^2 + 5 = 41$

35.
$$x^2 + x - 1 = 0$$
 36. $2x^2 + 3x + 5 = 0$

37. $x^4 - 5x^2 + 4 = 0$ 38. $(3x + 8)^2 = 36$

Identify the number and type of solutions.

$$39. \quad x^2 - 5x - 14 = 0$$

40.
$$4x^2 - 12x = -9$$

and type of solutions:_____

and type of solutions:_____

Identify the form of the quadratic equation and determine if the graph opens up or down. Then find the vertex, axis of symmetry, and x-intercepts and complete the table and graph the function.

42. Order the functions from narrowest graph to widest.

A.
$$f(x) = -2x^2$$
 $g(x) = \frac{1}{3}x^2$ $h(x) = 4x^2$

B.
$$f(x) = -4x^2$$
 $g(x) = 6x^2$ $h(x) = .2x^2$

43. Compare the graph of each function with the graph of $f(x) = x^2$.

A.
$$g(x) = -\frac{1}{3}x^2 + 2$$
 B. $g(x) = 2x^2 - 3$

Find the equation of the axis of symmetry, y- intercept, and the coordinates of the vertex. Is the vertex a max or min?

44.
$$f(x) = (x - 2)^2$$
 45. $g(x) = (x + 2)^2 + 4$

46. $y = x^2 - 2x + 1$ 47. $y = 3x^2 + 6x + 1$

$$48. \ y = -3x^2 + 6x + 4$$

49.
$$f(x) = -x^2 + 6x - 3$$

50.
$$g(x) = -x^2 + 2$$
 51. $f(x) = 5x^2 - 4$

56. A rocket is launched from atop a 101 foot cliff with an initial velocity of 116 ft/s. a. Substitute the values into the vertical motion formula $h = -16t^2 + vt + c$. Let h(t) = 0

b. Use the quadratic formula to find out how long the rocket will take to hit the ground after it is launched. Round to the nearest tenth of a second.

- 57. The Freedom Tower in New York City is 1776 feet tall. The equation $f(t) = -16t^2 + 1776$ models the height f(t) (in feet) of an object t seconds after it is dropped from the top of the tower.
 - a. After how many seconds will the object hit the ground? Round your answer to the nearest hundredth of a second.
 - b. What is the height of the object 3 seconds after it has been dropped from the top of the tower?

58. The path of a soccer ball can be modeled by the equation $h = -16t^2 + 8t + 3$, where *h* is the height (in feet) of the soccer ball *t* seconds after the ball is kicked.

a. After how many seconds does the ball reach its maximum height?

b. What is the maximum height of the soccer ball?

59. Write the equation of the quadratic function with vertex (3, -1) that passes through the point (0, 2).

60. A parabola has a vertex of (-5,8) and passes through the point (-7,-4). In the $y = a(x-h)^2 + k$ form of the parabola, what is the value of a?

61. A parabola has a vertex of (-3, -21) and passes through the point (-5, 1). In the $y = a(x - h)^2 + k$ form of the parabola, what is the value of a?

Simplify completely.

62. $\sqrt{-28}$ 63. $\sqrt{-32}$

Perform the indicated operation.

64. (6+3i) + (-4+10i) 65. (-2+6i) - (2-3i)

66. 3i(2+i)

Divide the polynomials using long and synthetic division. 68. $(x^3 + x^2 + 2x + 24) \div (x+3)$ 69. $(4x^3 + 52x + 15) \div (x+5)$

Determine whether the binomial is a factor of the polynomial function.

70. $f(x) = 3x^3 + 7x^2 - 8x - 5; x + 5$

71. $f(x) = 2x^3 + 15x^2 - 23x + 36; x + 9$

List all the possible rational zeros of the function. Then find all of the zeros.

72. $f(x) = x^3 + 9x^2 - 4x - 36$ 73. $f(x) = 2x^3 + 11x^2 + 18x + 9$