\qquad
Date_Block \qquad

Investigating Graphs of Polynomial Functions Transforming Polynomial Functions

- Polynomial functions are classified by their degree.
- The graphs of polynomial functions are classified by the degree of the polynomial.
- Each graph, based on the degree, has a distinctive shape and characteristics.
- End behavior is a description of the values of the function as x approaches infinity $(x \rightarrow \infty)$ or negative infinity $(x \rightarrow-\infty)$.
- It is helpful when you are graphing a polynomial function to know about the end behavior of the function.

Sketch the following functions and describe the end behavior of each function.

$$
f(x)=x^{2} \quad f(x)=-x^{2} \quad f(x)=x^{3} \quad f(x)=-x^{3}
$$

End Behavior
as $x \rightarrow \infty, f(x) \rightarrow$
as $x \rightarrow-\infty, f(x) \rightarrow$
as $x \rightarrow \infty, f(x) \rightarrow$
as $x \rightarrow \infty, f(x) \rightarrow$
as $x \rightarrow \infty, f(x) \rightarrow$
as $x \rightarrow-\infty, f(x) \rightarrow$
as $x \rightarrow-\infty, f(x) \rightarrow$ as $x \rightarrow-\infty, f(x) \rightarrow$

Now explore the graphs of some other polynomial functions on your own, and make a conjecture about the characteristics of the function that seem to affect its end behavior. Write your thoughts/conjecture here, and then we'll summarize our findings together.

Function	End Behavior	

Example 1: Determining End Behavior of Polynomial Functions
Identify the leading coefficient, degree, and end behavior.
A. $Q(x)=-x^{4}+6 x^{3}-x+9$
B. $P(x)=2 x^{5}+6 x^{4}-x+4$

Example 2: Using Graphs to Analyze Polynomial Functions

Identify whether the function graphed has an odd or even degree and a positive or negative leading coefficient.
A.

B.

1. Find the real zeros and y-intercept of the function.
2. Plot the x - and y-intercepts.
3. Make a table for several x-values that lie between the real zeros.
4. Plot the points from your table.
5. Determine the end behavior of the graph.
6. Sketch the graph.

Example 3: Graphing Polynomial Functions

Graph each function.
A. $f(x)=x^{3}+4 x^{2}+x-6$

B. $f(x)=-x^{3}+2 x^{2}+5 x-6$

- A turning point is where a graph changes from increasing to decreasing or from decreasing to increasing. A turning point corresponds to a local maximum or minimum.
- A polynomial function of degree n has at most $n-1$ turning points and at most $n x$-intercepts.
- You can use a graphing calculator to graph and estimate maximum and minimum values.

Local Maxima and Minima

For a function $f(x), f(a)$ is a local maximum if there is an interval around a such that $f(x)<f(a)$ for every x-value in the interval except a.

For a function $f(x), f(a)$ is a local minimum if there is an interval around a such that $f(x)>f(a)$ for every x-value in the interval except a.

Example 4: Determine Maxima and Minima with a Calculator
A. Graph $f(x)=2 x^{3}-18 x+1$ on a calculator, and estimate the local maxima and minima.
B. Graph $f(x)=x^{3}-2 x-3$ on a calculator, and estimate the local maxima and minima.

Example 5: Translating a Polynomial Function

For $f(x)=x^{3}-6$, write the rule for each function and identify the transformation.
A. $g(x)=f(x)-2$
B. $h(x)=f(x+3)$

Example 6:Reflecting a Polynomial Function

For $f(x)=x^{3}+5 x^{2}-8 x+1$, write the rule for each function and identify the transformation.
A. $h(x)=-f(x)$
B. $g(x)=f(-x)$

Example 7: Compressing and Stretching a Polynomial Function

For $f(x)=2 x^{4}-6 x^{2}+1$, write the rule for each function and identify the transformation.
A. $g(x)=\frac{1}{2} f(x)$
B. $g(x)=f\left(\frac{1}{3} x\right)$

Example 8: Combining Transformations

Write a function that transforms $f(x)=6 x^{3}-3$ in each of the following ways. Support your answer by using a graphing calculator.
A. Compress vertically by a factor of $\frac{1}{2}$, and shift 3 units right.
B. Reflect across the y-axis and shift 2 units down.

