Algebra 2 Honors Notes/Exploration: 3-7, 3-8

Name	
Date	Block

Investigating Graphs of Polynomial Functions Transforming Polynomial Functions

- Polynomial functions are classified by their degree.
- The graphs of polynomial functions are classified by the degree of the polynomial.
- Each graph, based on the degree, has a distinctive shape and characteristics.
- End behavior is a description of the values of the function as x approaches infinity (x → ∞) or negative infinity (x → -∞).
- It is helpful when you are graphing a polynomial function to know about the end behavior of the function.

Sketch the following functions and describe the end behavior of each function.

Now explore the graphs of some other polynomial functions on your own, and make a conjecture about the characteristics of the function that seem to affect its end behavior. Write your thoughts/conjecture here, and then we'll summarize our findings together.

Function	End Behavior	

Example 1: Determining End Behavior of Polynomial Functions

Identify the leading coefficient, degree, and end behavior.

A. $Q(x) = -x^4 + 6x^3 - x + 9$ B. $P(x) = 2x^5 + 6x^4 - x + 4$

Example 2: Using Graphs to Analyze Polynomial Functions

Х

Identify whether the function graphed has an odd or even degree and a positive or negative leading coefficient.

↓ y
2
↓ 0
↓ -2

A.

Steps for Graphing a Polynomial Function

- 1. Find the real zeros and y-intercept of the function.
- 2. Plot the x- and y-intercepts.
- 3. Make a table for several *x*-values that lie between the real zeros.
- 4. Plot the points from your table.
- 5. Determine the end behavior of the graph.
- 6. Sketch the graph.

Example 3: Graphing Polynomial Functions

Graph each function.

A.
$$f(x) = x^3 + 4x^2 + x - 6$$

B. $f(x) = -x^3 + 2x^2 + 5x - 6$

- A <u>turning point</u> is where a graph changes from increasing to decreasing or from decreasing to increasing. A turning point corresponds to a *local maximum* or *minimum*.
- A polynomial function of degree n has *at most* n 1 turning points and *at most* n *x*-intercepts.
- You can use a graphing calculator to graph and estimate maximum and minimum values.

Local Maxima and Minima

For a function f(x), f(a) is a **local maximum** if there is an interval around a such that f(x) < f(a) for every x-value in the interval except a.

For a function f(x), f(a) is a **local minimum** if there is an interval around *a* such that f(x) > f(a) for every *x*-value in the interval except *a*.

Example 4: Determine Maxima and Minima with a Calculator

- A. Graph $f(x) = 2x^3 18x + 1$ on a calculator, and estimate the local maxima and minima.
- B. Graph $f(x) = x^3 2x 3$ on a calculator, and estimate the local maxima and minima.

Example 5: Translating a Polynomial Function

For $f(x) = x^3 - 6$, write the rule for each function and identify the transformation.

A.
$$g(x) = f(x) - 2$$

B. $h(x) = f(x + 3)$

Example 6:Reflecting a Polynomial Function

For $f(x) = x^3 + 5x^2 - 8x + 1$, write the rule for each function and identify the transformation.

A.
$$h(x) = -f(x)$$

B. $g(x) = f(-x)$

Example 7: Compressing and Stretching a Polynomial Function

For $f(x) = 2x^4 - 6x^2 + 1$, write the rule for each function and identify the transformation.

A.
$$g(x) = \frac{1}{2}f(x)$$
 B. $g(x) = f(\frac{1}{3}x)$

Example 8: Combining Transformations

Write a function that transforms $f(x) = 6x^3 - 3$ in each of the following ways. Support your answer by using a graphing calculator.

- A. Compress vertically by a factor of $\frac{1}{2}$, and shift 3 units right.
- B. Reflect across the y-axis and shift 2 units down.