Algebra 2 Honors
 Notes: 3.5, 3.6

Name
Date \qquad

Part I

The Fundamental Theorem of Algebra

Every polynomial function of degree $n \geq 1$ has at least one zero, where a zero may be a complex number
Corollary: Every polynomial function of degree $n \geq 1$ has \qquad

Examples: Solve each polynomial equation by factoring.

1. $x^{3}-2 x^{2}-25 x=-50$
2. $4 x^{6}+4 x^{5}-24 x^{4}$
3. $x^{4}+25=26 x^{2}$

- The multiplicity of root r is the \qquad .
- When a real root has even multiplicity, the graph of $y=P(x)$ \qquad .
- When a real root has odd multiplicity greater than 1 , the graph \qquad .

The root -3 has a multiplicity of 2.
The graph touches at $(-3,0)$.

The root 0 has a multiplicity of 3 . The graph bends near (0,0).

Examples: Identify the roots of each equation. State the multiplicity of each root.
4. $x^{3}+6 x^{2}+12 x+8=0$

$$
\text { 5. } x^{4}+8 x^{3}+18 x^{2}-27=0
$$

For You :

Examples: Solve each equation by factoring. State the multiplicity of each root.
6. $x^{3}+6 x^{2}-5 x-30=0$
7. $2 x^{5}+12 x^{4}+16 x^{3}-12 x^{2}-18 x=0$

Part II

Rational Root Theorem

If the polynomial $P(x)$ has integer coefficients, then every rational root of the polynomial equation $P(x)=0$ can be written in the form \qquad

Irrational Root Theorem

If the polynomial $P(x)$ has rational coefficients and \qquad is a root of the polynomial equation
$P(x)=0$, where a and b are rational and \sqrt{c} is irrational, then \qquad .

Complex Conjugate Root Theorem

If \qquad is a root of a polynomial equation with real-number coefficients, then \qquad is also a root.

Examples: Solve each equation by finding all roots.

1. $4 x^{4}-21 x^{3}+18 x^{2}+19 x-6=9$
2. $x^{4}+x^{3}+2 x^{2}+4 x-8=0$
3. $2 x^{3}-9 x^{2}+2=0$
4. $x^{4}-3 x^{3}+5 x^{2}-27 x-36=0$
5. Write the simplest polynomial with roots $-1, \frac{2}{3}$, and 4 .
6. Write the simplest polynomial function with the given zeros: $0,-4, \sqrt{3}$
7. Write the simplest polynomial function with zeros $2 i, 1+\sqrt{2}$, and 3

Wrap Up

Write the simplest polynomial function with the given zeros.
8. $2,-1,1$
9. $0,-2, \sqrt{3}$
10. $2 i, 1,-2$
11. Solve by finding all roots: $x^{4}-5 x^{2}+7 x^{2}-5 x+6=0$

