Chapter 5 (Sections 5.3 – 5.5)

1. Find all solutions for the variable in the interval $[0, 2\pi)$.

a.)
$$2\sin^2 x + 3\cos x - 3 = 0$$

c.)
$$3 \tan^3 x - \tan x = 0$$

b.)
$$2\cos^2 x = \cos x$$

d.)
$$\sin 2x - \cos x = 0$$

2. Use half-angle formulas to find the exact value.

a.)
$$\cos\left(\frac{\pi}{8}\right)$$

b.)
$$\tan\left(\frac{3\pi}{8}\right)$$

c.)
$$\sin\left(\frac{\pi}{12}\right)$$

- 3. Write the expression as the sine, cosine, or tangent of an angle.
 - a.) $\cos 60^{\circ} \cos 10^{\circ} \sin 60^{\circ} \sin 10^{\circ}$

b.)
$$\frac{\tan 152^{\circ} - \tan 47^{\circ}}{1 + \tan 152^{\circ} \tan 47^{\circ}}$$

c.)
$$\sin\frac{4\pi}{9}\cos\frac{\pi}{8} + \cos\frac{4\pi}{9}\sin\frac{\pi}{8}$$

4. Verify each identity.

a.)
$$\cos\left(\theta + \frac{\pi}{2}\right) - \cos\left(\theta - \frac{\pi}{2}\right) = -2\sin\theta$$

b.)
$$\sec 2x = \frac{\sec^2 x}{2 - \sec^2 x}$$

$$c.) \frac{\cos x + \cos 3x}{\sin 3x - \sin x} = \cot x$$

d.)
$$(\sin x + \cos x)^2 = 1 + \sin 2x$$

Chapter 6

In 5 - 7, solve the triangle for all angles and sides. If two solutions exist, find both.

5.
$$c = 13, b = 8, B = 31^{\circ}$$

6.
$$A = 55$$
°, $b = 12$, $c = 7$

7.
$$A = 33^{\circ}, B = 70^{\circ}, b = 7$$

In 8 - 9, find the area of the triangle to the nearest tenth.

8.
$$A = 52^{\circ}$$
, $b = 14$ m, $c = 21$ m

9.
$$a = 7$$
 cm, $b = 8$ cm, $c = 9$ cm

Chapter 9

In 10 - 12, write the equation in standard form and then classify the graph as a parabola, circle, ellipse, or hyperbola.

10.
$$x^2 + y^2 - 6x + 4y + 9 = 0$$
 11. $x^2 - 6x + 16y + 21 = -4y^2$ 12. $y^2 - 6y - 4x + 21 = 0$

11.
$$x^2 - 6x + 16y + 21 = -4y^2$$

12.
$$y^2 - 6y - 4x + 21 = 0$$

13. Find the vertex, axis of symmetry, focus, and directrix of the parabola and sketch its graph.

$$\left(x+\frac{1}{2}\right)^2=4\left(y-1\right)$$

14. Identify the conic as a circle or ellipse. Then find the center and radius (if it's a circle); find the center, vertices, co-vertices, and foci (if it's an ellipse). Sketch its graph.

$$9x^2 + 4y^2 + 36x - 24y + 36 = 0$$

15. Find the center, vertices, foci, lines containing the axes, and the equations of the asymptotes of the hyperbola, and then sketch its graph.

16. Write the equation of a circle that has a center at (-1, 3) and passes through the point (-5, 6).

Sequences and Series

In 17 - 18, write the explicit formula for each sequence.

- 19. Find "n" if you know that $S_n = 59,046$ in the series 6 + 18 + 54 + 162...
- 20. Evaluate $\sum_{n=0}^{5} (20 n^2)$
- 21. Evaluate $\binom{12}{3}$

In 22 - 23, find each term described.

- 22. 2^{nd} term in expansion of $(x + 3)^3$
- 23. 4^{th} term in expansion of $(3u-1)^4$

In 24 - 25 expand completely.

24.
$$(2y - x)^4$$

25.
$$(2y + 3x)^3$$